پست وبلاگ

آموزش قدم به قدم یادگیری عمیق (ویديو دانشگاه استنفورد ۲۰۱۶)

آموزش قدم به قدم یادگیری عمیق (ویديو دانشگاه استنفورد ۲۰۱۶)

بسم الله الرحمن الرحیم

سلام به همگی . امروز(امشب؟) من میخوام یکی از بهترین آموزش های یادگیری عمیق کل اینترنت رو معرفی کنم بهتون .

قبلا تو بخش منابع یکسری منابع اصلی و نحوه خوندن رو قرار دادم ولی خب چون حجم مطالب زیاد هست فرصت نکردم کاملش کنم .

امروز اما خیلی اتفاقی خدا لطف کردو فهمیدم دانشگاه استنفورد کلاس یادگیری عمیق امسالش رو رکورد کرده و اونو پخش کرده. نوتهای این کلاس مربوط به سال قبل تو بخش منابع اورده شده

اما خود کلاس اولین باره که داره انجام میشه و کلاسش فوق العاده اس. همه چیزایی که من میخواستم بگم گام به گام تو این کلاس هست.(البته من به هرحال توضیحات خودم رو میدم) و کیفیت تدریس عالی هست.

ابزارهای مختلف مثل Caffe‌و Torch‌و Theano‌ هم اینجا بهشون اشاره میشه و توضیح درموردشون داده میشه بصورت مختصر و اطلاعات خیلی خوبی در مورد state of the art‌ و کارهای انجام شده تو این حوزه داده میشه.در یک کلام عالیه!

این کلاس تازه برگزار شده و هنوز در حال اجراس (آخرین کلیپ مربوط به یکی دو هفته پیشه) و بشدت به  همه کسایی که میخوان تو این زمینه کار کنن پیشنهاد میکنم این کلیپ ها رو ببینن .

(این کلاس حول آموزش شبکه های کانولوشن و Computer vision میگرده!)

برای دیدن این کلاس اینجا کلیک کنید . (میتونید از اینجا هم فایلها رو دانلود کنید و اگه از اینجا هم بعدا پاک شد نگران نباشید من این اموزش رو دارم کافیه تماس بگیرید)

برای دانلود  پاورپوینت ها هم اینجا کلیک کنید (حجم همه با هم تقریبا ۳۰۰ مگ میشه )

برای دانلود زیرنویس انگلیسی هم اینجا کلیک کنید

کلیپ ها تو سایت یو تیوب هستن و کسایی که امکان دانلود ندارن میتونن سفارش بدن.(حجم کلیپ ها ۱۰ گیگ هست)

 

CS224d: Deep Learning for Natural Language Processing

برای NLP یا همون Natural Language Processing تو حوزه دیپ لرنینگ هم کلاس Cs224d دانشگاه استنفورد( با نام CS224d: Deep Learning for Natural Language Processing ) امسال رو میتونید از این لینک دریافت کنید.حجمش ۳٫۵ گیگ بیشتر نیست.

برای دانلود اسلایدها هم میتونید از اینجا اقدام کنید.

یه نکته مهم :
دانشگاه استنفورد همه لکچرها در این مورد رو قرار نداده.(اموزش شبکه کانولوشن رو هم که بالا لینکش رو داده بودم یکی دوماه نشده از یوتیوب حذف کردن. البته تو یوتیوب هنوز فک کنم باشه که توسط افراد دیگه اپلود شده. هرچند لینک تورنتش بالا اومده)
تعداد جلسات کلاس ۱۶ جلسه هست اما در لینک بالا فقط ۱۰ جلسه اول رو قرار دادن . مابقی جلسات ممکنه تو سایت اختصاصی بچه های دانشگاه استنفورد قرار داده بشه (همون که برای دانلود اسلایدها لینکش رو دادم) . از طرفی همین کلاس مربوط به سال ۲۰۱۵ تو یوتیوب هست (۱۶ جلسه ) که میتونید برید و ببینید. علی الحساب برای لکچر ۱۱ (Advanced Recursive Neural Networks) اما اینجا کلیک کنید

 

با تشکر از جناب آقای Saeed که تو بخش نظرات یه یادآوری کردن تا این اموزش هم قرار بگیره .

اینم بگم که من به هر حال توضیحات فارسی تو این زمینه رو میدم و دلیل اینکه این مطلب رو گذاشتم بخاطر اینه که اگه کار من طول بکشه کسایی که میخوان تحقیق کنن از لحاظ منابع و… به مشکل برنخورن و کارشون سریعتر پیش بره.

در این بین باز اگه سوال و یا مشکلی دارید بپرسید تا انشالله اگه بلد بودم جواب بدم

التماس دعا

 

سید حسین حسن پور متی کلایی

درباره ی سید حسین حسن پور متی کلایی

موسس و مدیر سایت. اطلاعات در مورد فعالیت های کاری و تحصیلی : linkedIn . برای ارتباط از بخش تماس با ما یا در باره من استفاده کنید.

مقالات مرتبط

30 دیدگاه در “آموزش قدم به قدم یادگیری عمیق (ویديو دانشگاه استنفورد ۲۰۱۶)

    1. خواهش میکنم. لطفا دقت کنید که لینک آموزش دانشگاه استنفورد که تو بخش منابع اومده مکمل این آموزش ها هست و البته یکسری پیش نیاز هم داره (که اونجا توضیح دادم) ولی کلا خیلی عالیه چون همین مطالب رو ماه ها طول کشید تا من یادبگیرم اونم از منابع مختلف!.

      1. state of the art معادل همون cutting edge هست . پیشرفته هم معنی میده اما تو مقالات معمولا به معنای جدیدترین ,به روز ترین, سطح بالاترین هست. مثلا وقتی میگیم state of the art تو حوزه دسته بندی تصاویر فلان قدر هست یعنی آخرین(تازه ترین) نتیجه بهترین نتیجه بالاترین نتیجه شده فلان .
        بقول گوگل : the most recent stage in the development of a product, incorporating the newest ideas and features.
        modern, ultra-modern, futuristic, avant-garde, the latest, new, the newest, up to the minute; advanced

  1. سلام دوست عزیز
    سپاس بابت وبسایتی که ایجاد کردی.
    در مورد این ویدئو باید عرض کنم که این ویدئو مربوط به کلاس درس Convolutional Neural Networks for Visual Recognition است.
    ویدئو بسیار عالی است، اما برای کسانی که دنبال کار NLP و Speech و … هستند، ممکن هست که مفید نباشه.
    مباحثی مثل DBN چندان در این دوره پوشش داده نمیشه.

    1. سلام
      فرمایش شما درسته . البته آموزش NLP تو بخش منابع یادگیری داده شده . اما چشم من لینک ویدئو کورس NLP و دیپ لرنینگ دانشگاه استنفورد امسال رو هم میزارم
      DBN ها هم الان خیلی کم شده حداقل چیزی که من میبینیم و بجاش شبکه های کانولوشن و RNN خیلی زیاد شدن برای همین تاکید زیادی روش نبود (منم واقعیتش طرفش نرفته بودم )
      بابت یادآوری این مطلب باز هم ممنونم
      در پناه خدا انشاالله همیشه موفق و سربلند باشید

      ——–
      آپدیت : لینک آموزش در همین پست قرار داده شد کماکان در بخش منابع یادگیری عمیق هم لینکها و … در این رابطه و چیزای دیگه وجود داره.

  2. سلام روز بخیر.
    من یه دانش اموز کنکوری ام میشه در مورد این سیستم کمی بیشتر توضیح بدیدواینکه برای من فایل ها دانلود نمیشن؟
    با تشکر

    1. سلام .
      این مطالب مربوط به دانشجویان ارشد و دکتری هوش مصنوعی و نرم افزار میشه بیشتر اما اگه زبان انگلیسی خوب و وقت کافی برای پشت سر گذاشتن پیش نیازهاش رو داشته باشید مشکلی نیست و میتونید استفاده کنید.
      برای دانلود نباید مشکلی باشه . سایت تورنت اکادمی نیاز به یه کلاینت تورنت داره مثل بیت تورنت و بعد دانلود ازش مشکلی نیست.
      لینک دیگه هم مربوط به یوتیوب هست که میتونید هم آنلاین ببینید و هم با استفاده از نرم افزار/وب سایتها اون ویدئو ها رو دانلود کنید

  3. سلام
    در اولین درس این اسلایدها، لینکی برای آموزش پایتون هست
    ولی متاسفانه کلیک می کنم گویا امکان دسترسی نیست
    منبع خوبی برای یادگیری پایتون در حوزه ی پردازش زبان می شناسید؟

    1. سلام . بصورت اختصاصی نه .
      اما یه لینک اشنایی اولیه با پایتون هست اینجا : http://cs231n.github.io/python-numpy-tutorial/ که خوبه
      یه آموزش کامل و جالب هم دیده بودم میگردم پیدا کردم لینکش رو همینجا میزارم.
      ولی تا اون زمام بمظرم میاد کورس ایرا هم یه کورس در مورد پایتون داشت اونو یه سرچ کنید حتما

  4. سلام
    خیلی ممنون از راهنمایی های عالیتون در این پست.
    میخواستم بپرسم lecture1 دانشگاه استفورد رو ندارین؟ چون تو این لینک تنها از lecture 2 تا ۱۵ هست؟
    با تشکر

  5. سلام
    ببخشید بنده یه اشکالی داشتم
    اگه زحمتی نباشه میشه مختصری در مورد lecture2 با عنوان image classification pipelin توضیح بدین؟
    مهمترین سوالم مربوط میشه به نحوه ی تشخیص تفاوت بین دیتای تست و دیتاهای train شده برای کلاس بندی تصویر…که در این اسلایدها L1 وL2 روگفته و فرمولی هم برای محاسبشون نوشته ولی دقیق متوجه نشدم کدوم فاصله منظورشون هست؟
    ممنون میشم راهنمایی کنید.

    1. سلام
      تو این لکچر یکسری روش اولیه که ممکنه به ذهن کسی برسه برای دسته بندی تصاویر گفته میشه و ناکارآمدی هرکدوم مشخص میشه. تا اینکه برسیم به شبکه کانولوشن نهایتا (البته در این الکچر نه.)
      در مورد L1 و L2 هم گفته که دوتا از روشها برای مشخص کردن میزان تفاوت بین دو تصویر هستن. کدوم بهتره؟ نمیدونیم. بر اساس هر کاری باید تست کنیم. توضیحی در این مورد در داخل لکچر داده نشده . اما پیشنهاد میکنم این لینک رو حتما ببینید بصورت شهودی اطلاعات خوبی میده از تفاوتهای بین این دو:
      http://www.chioka.in/differences-between-the-l1-norm-and-the-l2-norm-least-absolute-deviations-and-least-squares/

  6. خیلی ممنونم از راهنماییتون
    ببخشید سوالام کمی زیادن شاید به خاطر تازگی مساله و پیچیدگی!!
    پس یعنی تو این لکچر فقط روش ها رو میگه با ایرادایی که دارن درسته؟ و دیگه الآن استفاده ای ازشون نمیشه؟
    این روش های اولیه که فرمودین همون Nearest Neighbor classifier و k-Nearest Neighbor classifier هست؟
    بعد Linear Classification چطور؟

    1. از Nearest Neighbor و K-NN که هیچوقت برای اینکار استفاده نمیشد یعنی عملی نیست. فقط برای اینکه ایده بده کسی چه چیزهایی ممکنه به ذهنش برسه عنوان شده .
      linear classifier ها هم کلا بدرد نمیخورن و استفاده نمیشن.
      از بین اینها فقط روشهای مبتنی بر HOG و SIFT و از این دست هستن که واقعا استفاده عملی داشتن و دارن ولی خب اینا هم مشکلات خاص خودشونو دارن.
      من پیشنهاد میکنم حتما ویدئوها رو ببینید چون خیلی مطالب رو اینطور از دست میدید اگر بخوایید فقط اسلاید تماشا کنید.

  7. سلام و عرض احترام خدمت شما
    ممنونم از مطالب مفید و عالی شما
    سوالی از حضورتان داشتم
    برای برطرف کردن بروز خطا در لایه FC باید چه عملیاتی انجام شود؟
    آیا باید وزنها اصلاح شود یا موارد دیگر نیز وجود دارد؟
    با تشکر از شما

      1. باسلام وعرض احترام
        طبق فرمایشون من هرکاری می کنم نمی تونم وارد بخش پرسش و پاسخ بشوم و مجبورم اینجا از شما سوال کنم.
        پیشاپیش عذرخواهی می کنم.
        منظور بنده این است که وقتی متوجه خطا در لایه FC شدیم چگونه باید متوجه شویم مشکل در کدام لایه و وزن بوده است؟ به عبارت بهتر لطفا جزييات بيشتري در خصوص چگونگي تنظيم وزن لايه هاي مياني بفرمائید.
        ممنونم از لطف شما

        1. سلام
          مشکلتون در سایت چی بوده ؟ چون چک کردم سایت هیچ مشکلی نداره ظاهرا و کاربرا هم چیزی گزارش ندادن .
          وقتی ثبت نام کردید باید روی پرسش کلیک کنید و سوالتون رو بنویسید .
          منظور شما ، محاسبه خطا در لایه آخر و چگونگی تنظیم/مجازات هر پارامتر دخیل در رسیدن به اون خطا در لایه های قبلی هست؟ این کار بصورت خودکار توسط الگوریتم بک پراپگیشن انجام میشه . وظیفه این الگوریتم credit assignment هست یعنی هر پارامتر به همون نسبتی که در جواب اخر تاثیر داشته جریمه یا تشویق بشه.
          اما اینکه میزان این تاثیر در لایه های مختلف رو باز چطور میشه کم و زیاد کرد این مهم از طریق اعمال ضرایب لایه ها انجام میشه.
          اینکه کدوم لایه باید چه ضریبی داشته باشه هم طی سعی و خطا بدست میاد. معمولا تنها لایه های اخر ضریب بیشتر از ۱ دارن و لایه های قبلی ازاد گذاشته میشن تا بصورت معمول پارامترها بروز رسانی بشن. در بعضی موارد هم که دیتاست ها شبیه هم هست همه لایه های قبلی قفل میشن و تنها لایه /لایه های انتهایی مورد اموزش قرار میگیرن.

  8. سلام
    واقعا ممنونم از خوبی که در حق ما می کنید و علمتون رو در اختیار دیگران می گذارید

    من می خوام ویدیو ها رو سفارش بدم اگر قیمت ها مناسب باشه
    لطفا با ایمیلم در تماس باشید

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *