بسم الله الرحمن الرحیم
تعداد کسانی که در مورد نیازمندی های سخت افزاری سوال میکنن روز به روز افزایش پیدا میکنه و سوالهای زیادی هم در بخش پرسش و پاسخ و همینطور تلگرام و… داشتیم تا بحال. از طرفی هم یکسال قبل من گفته بودم که اطلاعات کافی در این زمینه رو در سایت قرار میدم اما بعلت مشغله زیاد نتونستم مطلب اختصاصی در موردش بنویسم. انشاالله در این پست در این مورد صحبت میکنیم و یکسری توضیحات مورد نیاز رو میدم . این بخش رو هم به دو قسمت انشاالله تقسیم میکنم . در بخش اول کلیات رو میگم و در بخش دوم انشاالله سعی میکنم اگر بشه یک مقایسه ای بین کارتها و قدرتشون هم انجام بشه و یه بنچمارکی هم قرار داده بشه.
بخش اول : کدام کارت گرافیک برای یادگیری عمیق مناسب است ؟
همونطور که ما میدونیم یادگیری عمیق حول شبکه های عصبی عمیق میگرده و اتفاقی هم که در این شبکه ها رخ میده چیزی جز یکسری محاسبات ریاضی و بطور خاص ماتریسی در مقیاس زیاد نیست. به همین دلیل استفاده عملی از یک شبکه عصبی عمیق اگر با پردازند ههای معمولی بخواد انجام بشه تقریبا غیر ممکن خواهد بود. به همین دلیل هم شما در تمامی کتابخونه ها و چارچوب های معتبر مشاهده میکنید که پردازش ها تحت کارتهای گرافیک انجام میشه. البته همه این کتابخونه ها پیاده سازی مبتنی بر CPU رو دارند که معمولا برای آشنایی و اجرای دموها و اشکال زدایی ها مورد استفاده قرار میگیره.
اوائل شروع یادگیری عمیق اجرای پردازش ها محدود به استفاده از کارتهای گرافیک بود. اما طی یکسال اخیر فعالیتهایی در جهت استفاده از سیستم های توزیع شده هم صورت گرفته که در کفی میشه به SparkCaffe و در جاوا به DeepLearning4J و احتمالا معروف تر از همه Tensorflow اشاره کرد. ذکر این نکته ضروریه که یک کارت گرافیک با قیمت متوسط مثل GTX960 یا حتی GTX1060 از یک سرور با پردازنده xeon هم به مراتب قوی تره. برای اطلاعات بیشتر بعنوان مثال میتونید اینجا و اینجا رو مشاهده کنید.
پس در حال حاضر ما برای اینکه بتونیم در یک زمان معقول یک شبکه عصبی عمیق رو آموزش بدیم نیازمند استفاده از پردازش موازی هستیم و برای اینکار از کارتهای گرافیک استفاده میشه. خب حالا از چه کارت گرافیکی استفاده باید کرد؟
در حال حاضر شرکت Nvidia برنده بی چون و چرای این حوزه است. تمامی کتابخونه ها و چارچوبها بدون استثنا از کارتهای انویدیا پشتیبانی میکنن و مبتنی بر Cuda و cudnn هستند. پشتیبانی از کارتهای AMD/Intel و متنفرقه یا مبتنی بر OpenCL یا وجود نداره و یا بشدت ضعیف هست بعنوان مثال AMD برنچی از کفی رو به OpenCL پورت کرد اما خیلی زود هم اونو کنار گذاشت و پشتیبانی ازش رو قطع کرد. هرچند در حال حاضر یک برنچ مبتنی بر OpenCL در کفی وجود داره (اینجا) که کسانی که کارت گرافیک AMD و یا Intel دارن میتونن ازش استفاده کنن اما از لحاظ سرعت و بروز رسانی قابل قیاس با ورژن اصلی و مبتنی بر Cuda/cudnn نیست.البته اخیرا AMD شروع به پشتیبانی جدی تری در این حوزه کرده و با ارائه rocm و ارائه نسخه های بروز فریم ورکهای تراز اول مثل تنسورفلو و پای تورچ برای کارتهای مبتنی بر AMD قدم های خوبی برداره. برای اطلاعات بیشتر انتهای این بخش رو ببینید.
در تصویر بالا هم یک مقایسه بین CPU و GPU میبینید (در بخش دوم مقایسه خیلی کاملتری داریم انشاالله) به تعداد روزها دقت کنید!(۴۳ روز در برابر ۳ روز!)
این قضیه در مورد تنسورفلو هم به همین شکل صادق بوده و برنچ های مختلفی هر از چندگاهی توسط افراد مختلف ایجاد و بعد از دور خارج میشن.
به همین دلیل پیشنهاد اکید میشه در زمان خرید حتما یک کارت گرافیک انویدیا رو تهیه کنید.
خب آیا هر کارت انویدیایی قابل استفاده است ؟
جواب خیر هست. با هر کارتی امکان آموزش شبکه های عمیق رو شما ندارید (البته اگر منظور استفاده از کتابخونه ها/فریم ورکهای معتبر باشه اگر خودتون بخوایید برنامه نویسی کنید که دستتون بازه) . در اینجا چند نکته است که باید بهش توجه بشه.
نکته اول قابلیت های کارت گرافیک شما است . شما ار هر کتابخونه و یا چارچوبی که قراره استفاده کنید باید به نیازمندی های سخت افزاری اون توجه کنید. بعنوان مثال اگر از کفی میخوایید استفاده کنید باید حتما کارت گرافیک شما compute capability 2.1 به بالا داشته باشه.(در نسخه اخیر کفی شما باید از compute capability 3.0 به بالا استفاده کنید) اگر ار تنسورفلو میخوایید استفاده کنید (پکیج های آماده اش) باید حتما کارت گرافیک شما compute capability 3 به بالا داشته باشه. (آخرین نسخه تنسورفلو در حال حاضر حداقل نیازمند compute capability 3.5 هست) این قضیه برای torch هم صادقه.(از نسخه۰٫۳ پایتورچ فقط از کارتهای با compute capabilty 5.0 به بالا پشتیبانی میشه.) برای اینکه متوجه بشید کارت گرافیک مورد نظر شما این قابلیت ها رو داره میتونید از بخش ابزارها لیست و لینکهایی که برای این بخش قرار داده شده استفاده کنید.
در زیر لیست کارتهای مختلف و وضعیت پشتیبانی اونها از compute capalibity رو مشاهده میکنید :
لیست GPU ها و پشتیبانی اونها از Compute Capabilityو CUDA :
در زیر کارتهای مختلف با compute capability 3 به بالا مشخص شدن (با بردن ماوس روی هر لیست اطلاعات compute capability اون رو میتونید به تفکیک مشاهده کنید)
1 2 3 4 5 6 7 8 9 |
<Kepler> GeForce GTX 770, GeForce GTX 760, GeForce GT 740, GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GTX 660 Ti, GeForce GTX 660, GeForce GTX 650 Ti BOOST, GeForce GTX 650 Ti, GeForce GTX 650, GeForce GTX 880M, GeForce GTX 780M, GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GTX 680MX, GeForce GTX 680M, GeForce GTX 675MX, GeForce GTX 670MX, GeForce GTX 660M, GeForce GT 750M, GeForce GT 650M, GeForce GT 745M, GeForce GT 645M, GeForce GT 740M, GeForce GT 730M, GeForce GT 640M, GeForce GT 640M LE, GeForce GT 735M, GeForce GT 730M Quadro K5000, Quadro K4200, Quadro K4000, Quadro K2000, Quadro K2000D, Quadro K600, Quadro K420, Quadro K500M, Quadro K510M, Quadro K610M, Quadro K1000M, Quadro K2000M, Quadro K1100M, Quadro K2100M, Quadro K3000M, Quadro K3100M, Quadro K4000M, Quadro K5000M, Quadro K4100M, Quadro K5100M, NVS 510 Tesla K10, GRID K340, GRID K520 |
1 2 3 4 |
<Kepler> Tegra K1,Jetson TK1 |
1 2 3 4 5 6 |
<Kepler> GeForce GTX Titan Z, GeForce GTX Titan Black, GeForce GTX Titan, GeForce GTX 780 Ti, GeForce GTX 780, GeForce GT 640 (GDDR5), GeForce GT 630 v2, GeForce GT 730, GeForce GT 720, GeForce GT 710,GeForce GT 740M (64-bit, DDR3) Quadro K6000, Quadro K5200 Tesla K40, Tesla K20x, Tesla K20 |
1 2 3 4 5 6 |
<Maxwell> GeForce GTX 750 Ti, GeForce GTX 750, GeForce GTX 960M, GeForce GTX 950M, GeForce 940M, GeForce 930M, GeForce GTX 860M, GeForce GTX 850M, GeForce 845M, GeForce 840M, GeForce 830M Quadro K2200, Quadro K1200, Quadro K620, Quadro M2000M, Quadro M1000M, Quadro M600M, Quadro K620M, NVS 810 Tesla M10 |
1 2 3 4 5 6 |
<Maxwell> GeForce GTX Titan X, GeForce GTX 980 Ti, GeForce GTX 980, GeForce GTX 970, GeForce GTX 960, GeForce GTX 950, GeForce GTX 750 SE, GeForce GTX 980M, GeForce GTX 970M, GeForce GTX 965M Quadro M6000 24GB, Quadro M6000, Quadro M5000, Quadro M4000, Quadro M2000, Quadro M5500, Quadro M5000M, Quadro M4000M, Quadro M3000M Tesla M4, Tesla M40, Tesla M6, Tesla M60 |
1 2 3 4 5 6 |
<Pascal> Nvidia Titan X, GeForce GTX 1080, GTX 1070, GTX 1060, GTX 1050 Ti, GTX 1050 Quadro P6000, Quadro P5000 Tesla P40, Tesla P4 |
1 2 3 4 5 6 |
<Turing> NVIDIA TITAN RTX, GeForce RTX 2080 Ti, RTX 2080, RTX 2070, RTX 2060 Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Quadro RTX 4000 Tesla T4 |
خب تا به اینجا تصمیم گیری برای خیلی از شماها باید مشخص تر و راحت تر شده باشه. اما آیا اطلاعات بالا کافیه ؟ خیر!
سوال : چه اطلاعات دیگه ای باید داشته باشیم ؟
کارتهای بالا صرفا مشخص کننده یکسری حداقلها هستن. اما این اعداد به هیچ وجه نشون دهنده اینکه چقدر یک کارت برای کار من نوعی میتونه مفید باشه نیستند. من باید به چه چیزهای یک کارت گرافیک توجه بیشتری بکنم؟
سه موضوع زیر رو در نظر بگیرید
- حجم حافظه
- قدرت پردازش
- پهنای باند
- داشتن TensorCore
این ها مواردی هست که باید در زمان تهیه یک کارت گرافیک لحاظ کنید. در درجه اول باید بدونید که تقریبا اکثر معماری های بسیار موفق که دقت بسیار بالایی رو ارائه میکنن خیلی عمیق هستن و این به معنای اشغال حجم زیادی از حافظه اس. بعنوان مثال معماری ساده و ابتدایی مثل AlexNet در زمان آموزش روی دیتاست ایمیج نت با اندازه تصاویر ۲۲۴ در۲۲۴ پیکسل به ۶ گیگابایت رم نیاز داشت. و یا معماری Vggnet و همینطور GoogleNet و یا ResNet به مراتب حجم های خیلی بیشتری رو نیاز دارن . البته میشه با روشهایی مثل کاهش اندازه بچ میزان حافظه مصرفی رو کاهش دادم و یا اندازه تصاویر ورودی رو کاهش داد اما هر دو این کارها تاثیر مستقیم روی دقت نهایی میزارن و باعث بدتر شدن اون میشن. خصوصا کاهش اندازه بچ در زمان آموزش (یا همون training ) تاثیرات خیلی بدی میتونه بزاره . به همین علت برای اینکه در آموزش و تحقیقاتتون دستتون باز باشه و به مشکل حافظه نخورید جدا پیشنهاد میشه از کارتهای با حجم حافظه بالا استفاده کنید. (در انتها توضیح بیشتری میدم)
نکته بعدی قدرت پردازش هست یا همون cuda cores در کارتهای گرافیک. هرچقدر قدرت پردازشی کارت شما بیشتر باشه آموزش شما سریعتر پیش میره و این نکته بشدت قابل اهمیتیه چرا که شما حتما تا جایی که ممکنه باید فاز آموزشی سریعی داشته باشید تا بتونید پارامترهای مختلف رو تنظیم کنید و اگر کارت شما از قدرت کافی برخوردار نباشه بشدت تو اینجا زمینگیر میشید و خیلی از ایده ها و نکات رو نمیتونید عملا پیاده و نتیجه اش رو ببینید و زمان زیادی رو از دست میدید .
نکته بعدی که ارتباط تنگاتنگی با مورد قبلی داره پهنای بانده . در شبکه عصبی بخاطر محاسبات زیادی که رخ میده پهنای باند نقش بشدت حساسی داره . و قابل ملاحظه ترین تاثیر رو میزاره . حتما در بازار دیدید که کارتهای گرافیکی هستن مثل GTX750 که با ۴ گیگ رم معرفی شدن! این کارت فوی ای هست اما نه اونقدر! و اگر شما مدلی داشته باشید که ۴ گیگ فضا رو اشغال کرده من بهتون قول میدم زمان خیلی زیادی رو باید برای آموزش اون سپری کنید. (نکته دوم در انتها رو بخونید) . به همین منظور کارتهای ۶۴ بیتی اصلا مناسب نیستند و همینطور کارتهای ۱۲۸ به بالا با توجه به معماری اونها باید انتخاب بشه . دقت کنید که با جدید شدن معماری ها و حافظه اونها پهنای باند کارتها هم خیلی دستخوش تغییر میشه و براحتی میشه دید که بعنوان مثال کارت ۱۲۸ بیتی مثل GTX960 از یه کارت با رابط ۲۵۶بیتی مثل GTX560 خیلی بیشتره!(در حد ۲ برابر !) برای مقایسه پهنای باند مدلهای مختلف میتونید از اینجا استفاده کنید.(دقت کنید مدلهایی M دارن از مدل دسکتاپ خیلی ضعیف تر هستن. بعنوان مثال ۹۶۰M (با ۸۰ گیگ) رو با ۹۶۰ معمولی(با ۱۱۲ گیگ پهنای باند) اینجا مقایسه کنید) پس در زمان خرید همیشه سعی کنید کارت های جدید تر رو بخرید و حتما حافظه کارت شما از نوع GDDR5 و یا جدیدتر باشه. به هیچ وجه کارتی که میخرید DDR3 نباشه
با ورود سری جدید کارتهای گرافیک Nvidia لیست زیر دستخوش تغییراتی میشه. کارتهای جدید Nvidia از قابلیت جدیدی بنام Tensor core ها بهره میبرند که مختص شبکه های عصبی طراحی شدند. این تنسور کورها سرعت ترینینگ شما رو چند برابر افزایش میدند و خصوصا در کنار mixed precision training حافظه به مراتب کمتر و سرعت به مراتب بیشتری خواهید داشت. در مورد mixed precision training من انشاءالله سر فرصت توضیح کامل میدم اما خیلی خلاصه اشاره به استفاده از fp16 بجای fp32 در محاسبات اعشاری داره (دلیل mixed precision بودن هم اینه که جاهایی که ممکنه این کاهش دقت برای ترینینگ مشکل ایجاد کنه از fp32 کماکان استفاده میشه(برای همین بهش میگن mixed precision البته فقط محدود به fp16 و fp32 نیست ولی اینها عمومیت بیشتری دارن) برای همین و به این شکل تقریبا مصرف حافظه نصف و پرفورمنس خروجی کارت هم تقریبا ۲ برابر میشه (در کارتهای معمولی که از تنسورکور استفاده نمیکنند). در کارتهایی که از تنسورکور استفاده میکنند افزایش پرفورمنس به چند برابر میرسه. با توجه به این نکته و فعال شدن بحث mixed precision tranining برای اینکه بیشترین کارایی رو داشته باشید استفاده از کارتهایی که از این قابلیت استفاده میکنند در اولویت قرار داره. کارتهایی مثل GTX2080 دوبرابر از کارتی مثل GTX1080TI سریعتره
خب همه این صحبت ها شد حالا چه کارتهایی با توجه به بازار امروز پیشنهاد میشه ؟
من به ترتیب بر اساس قیمت/قدرت/آینده نگری پیشنهادات خودم رو عنوان میکنم و در ادامه باز توضیحات تکمیلی رو میدم .
- Titan V Volta 12GB HBM2-12Gig*
- RTX 2080 TI-12Gig
- RTX 2080-8Gig**
- RTX 2070 Super-8Gig
- RTX 2070-8Gig*
- TitanX Pascal-12Gig
- GTX 1080 TI –11Gig
- TitanX Maxwell-12Gig
- RTX-2060 Super-8Gig
- GTX 1080-8Gig
- RTX 2060-6Gig*
- GTX 1070TI-8Gig
- GTX 1070-8Gig
- GTX 980 TI-6Gig
- GTX 1060-6Gig
- GTX 980-4Gig
- GTX 960-4Gig
- GTX 950-4Gig
- *GTX 970-4Gig
نکته مهم :
بج های اولیه سری کارتهای RTX انویدیا مشکل زیادی دارن (همه انواع از ۲۰۸۰ گرفته تا ۲۰۶۰ ) و نرخ خرابی در اونها زیاده. این مشکلات در بچ های بعدی برطرف شده. اگه کارت رو خودتون خریدید و گارانتی داره مشکلی ندارید اما اگر کارت رو دسته دوم میخوایید تهیه کنید به تاریخ تولید اون دقت کنید و ترجیحا سعی کنید کارتهای تولید شده سال ۲۰۱۸ رو نخرید! (اولین بچ این کارتها اگوست ۲۰۱۸ تولید شده). بنظر میاد کارتهای تولید شده در سال ۲۰۱۹ و بعدش مشکلی از این جهت ندارن.
نکته دوم :
سر جدیدی تحت عنوان super عرضه شده. که نسبت به مدل پایه قویترن. به همین دلیل در صورت وجود تفاوت قیمت فاحش بین این دو مدل سعی کنید مدل سوپر رو بگیرید. اگر قیمت سوپر بالاس اما هنوز فاصله فاحشی نسبت به کارت قویتر بعدی داره (مثلا rtx2060 super کارایی نزدیک به rtx2070 داره با ۸ گیگ رم اینجا اگه قیمت ۲۰۶۰ به قیمت ۲۰۶۰ super نزدیکتره و فاصله زیادی با قمیت ۲۰۷۰ داره سوپر ۲۰۶۰ رو بگیرید. اما اگر قیمت سوپر ۲۰۶۰ با ۲۰۷۰ تفاوت چندانی نداره همون ۲۰۷۰ رو بگیرید )
نکته مهم برای کارت های گرافیک AMD :
کارت های گرافیک AMD سابقا در زمینه یادگیری عمیق پشتیبانی بسیار ضعیفی داشتند بصورتی که عملا در فریم ورکهای مطرح تنها کارتهای گرافیک ساخت شرکت NVidia پشتیبانی میشد و مورد استفاده قرار میگیرفت. این مساله البته مدتی هست که تا حدودی تغییر کرده و شرکت AMD شروع به ارایه پشتیبانی در این زمینه کرده. البته این پشتیبانی گسترده نیست و فعلا فقط از لینوکس پشتیبانی میشه. شما میتونید نسخه های مبتنی بر ROCm (RadeonOpenCompute) فریم ورکهایی مثل Tensorflow و Pytorch رو از اینجا دانلود و نصب کنید. دقت کنید نسخه ها همیشه بروز نیستند و چندین ماه ممکنه طول بکشه تا نسخه ای بروز رسانی بشه. این پورتها برای کسانی هست که کارت گرافیک AMD دارند و قصد دارند از یادگیری عمیق استفاده کنند و متحمل خرید کارت گرافیک جدید نشن./ از خرید کارتهای گرافیک AMD برای استفاده در یادگیری عمیق تا زمانی که پشتیبانی مناسب وجود نداره بشدت پرهیز کنید.
لیست سخت افزارهایی که پشتیبانی میشن رو میتونید از اینجا مشاهده کنید.
بخش بعدی :مقایسه بین CPU و GPU و کاراتهای مختلف با هم
آپدیت : ۳۰ دی ماه ۱۳۹۷ :
متاسفانه طی یکسال اخیر قیمت ها بطرز بدی افزایش پیدا کردند و تهیه کارت گرافیک رو برای دانشجویان و محققان عزیز با مشکل مواجه کرده. کارتهای جدیدی هم وارد بازار شده و من لیست خرید رو با توجه به کارتهای جدید بروز کردم.
از اونجایی که اکثر دانشجوها وضعیت مالی مناسبی ندارند سعی کنید از کارتهایی مثل RTX2060 استفاده کنید. که به نسبت سری ۱۰۷۰ سریعتره و بطور ویژه چون از تنسورکور پشتیبانی میکنه در زمان استفاده از mixed precision training/inference مشکل حافظه نخواهید داشت (حافظه شما تقریبا ۲ برابر میشه). پس اولویت شما با خرید کارتهایی باشه که از تنسورکور استفاده میکنند. البته با ورود این کارتها قیمت کارهای قبلی هم پایین میاد و میتونید از اونها هم استفاده کنید. فقط موقع خرید دسته دوم دقت کنید کارتها برای mining استفاده نشده باشند. اگر کارتی با قیمت خیلی پایین داره بفروش میرسه حتما شک کنید. چون کار ترینینگ یک پروسه طولانی مدت هست و معمولا با لود ۱۰۰ درصد رو جی پی یو استفاده از کارتهایی که تحت ماینینگ بودند و وضعیت کولینگ مناسبی نداشتن اصلا پیشنهاد نمیشه چون ممکنه خیلی زود مشکل ایجاد کنند.
اگه از نظر هزینه در مضیقه هستید ترجیح اولتون این باشه در سایتهایی مثل لیون کامپیوتر و پرشین تولز و امثالهم بدنبال خرید کارتهای دسته دوم باشید (که ترجیحا چندماهی از گارانتی اونها باقی مونده باشه) و فرصت تست داشته باشید نرم بازار اینه که قیمت دست دوم ۳۰ ۳۵ درصد کاهش قیمت داره ولی خب بسته به انصاف فروشنده و کارکرد و… این درصد بالا پایین میتونه بشه. میتونید از سیستم واسطه لیون استفاده کنید و یا از فروشنده های معتبر که در انجمن این سایتها فعالن خرید کنید. معمولا خرید اینطوری مناسب تره .
اگر وضعیت مالی خوبی دارید که مشخصه انتخابهای زیادی دارید. اگر وضعیت مالی خوبی ندارید گزینه های رایگان رو قبلا در سایت معرفی کردم . یکی از اونها Google Colab هست . دیگری سایت vast.ai هست که قیمت های بسیار خوبی برای اجاره سیستم داره. و میتونید بصورت رایگان معمولا برای چند ساعت (از یک ساعت تا بیشتر بسته به سرویسی که انتخاب میکنید) ترین انجام بدید. اگر هم خواستید میتونید اجاره کنید. سرویس های AWS امازون و گوگل هم هست. گوگل یک سرویس ۳۰۰ دلاری رو به دانشجوها ارائه میکنه که البته ما تحریمیم در کشور ولی خب عزیزانی که خارج از کشور هستن میتونن به این هم نگاهی بندازن.
کلا الان خرید کارتهای سری پاسکال پیشنهاد نمیشه (یعنی سری ۱۰۸۰ ۱۰۷۰ ۱۰۶۰ ) چون قیمت مثلا RTX2070 که خیلی قوی تر از یه GTX1080 و GTX1080TI هست از برند ایسوز سری ROG که از گرون قیمت ترین هاس ۶۳۰ دلاره و در ایران هم الان ۱۱ میلیون تومان(دیجی کالا) و ۱۰ میلیون سیصد هزار تومان (در لیون کامپیوتر) فروش میره. ولی GTX1080 حدود ۸ الی ۹ میلیون و سری TI اون هم ۱۰ الی ۱۷ میلیون تومنه!!! و درسته اینجا GTX1080TI حافظه بیشتری داره اما چون اصل و برنامه ریزی روی استفاده از fp16 و کمتر هست از نظر حافظه مشکلی ندارید و از نظر سرعت هم که خیلی سریعتره.
سری های ارزونتر ۲۰۷۰ از ۵۰۰ دلار شروع میشه و تا ۵۳۰ دلار هم هست. و احتمالا قیمتش در ایران حدود ۵ میلیون ۶ میلیون و خورده ای خواهد بود.
قیمت کارت RTX2080 هم از ۷۲۰ دلار شروع میشه و تا ۹۰۰ دلار وجود داره. تو ایران قیمت کارت Founders Edition الان ۱۴ میلیون تومن فروش میره . سری RTX2080 TI هم که قیمت سرسام آوری داره از ۱۲۰۰ دلار شروع میشه و تا ۱۸۰۰ دلار هم میرسه! با این قیمتهای سرسام آور دلار بعیده بصورت زیاد وارد کشور بشه و در صورت ورود هم قیمتی بین ۱۵ تا ۲۵ میلیون تومن میشه براش متصور بود.
پس قیمت ها :
RTX 2080 TI : فعلا نامشخص (قیمت حدودی ۱۵ الی ۲۵ میلیون تومان )
RTX 2080-8Gig : بین ۱۳ الی ۱۵ میلیون تومان
RTX 2070-8Gig : بین ۱۰ میلیون الی ۱۱ میلیون تومان
RTX 2060-6Gig : بین ۵ الی ۶ میلیون تومان
تا جای ممکن سعی کنید از سری Turing (سری جدید انویدیا کارتهای با شماره (RTX20xx) ) تهیه کنید. معمولا الان قیمتها مناسبه و احتمال اینکه طی یکی دو ماه اینده باز افزایش داشته باشیم هست .
ولی خب قیمتهای سری پاسکال هم بصورت زیره . همونطور که میبینید تقریبا خرید هیچکدوم از این کارتها توجیحی نداره مگر اینکه با قیمت خیلی کم تهیه بشن.(البته باز عرض میکنم ممکنه الان این قیمتهای خیلی خوب باشن و باز یکی دو ماه دیگه قیمت ها بره بالا. و همین هم غنیمت بشه کما اینکه ۱۰۸۰ دو میلیون و چهارصد هزارتومن بیشتر نبود سال ۹۶ و الان شده ۶ ۷ میلیون تومن!)
GTX1080 TI : بین ۱۰ الی ۱۷ میلیون تومان
GTX1080-8Gig : بین ۵ میلیون و پانصد الی ۸ میلیون و هفتصد هزار تومان
GTX170 TI-8Gig : بین ۴ میلیون الی ۶ میلیون و ششص هزار تومان
GTX1070-8Gig : بین ۴ میلیون الی ۵ میلیون و ششصد هزار تومان
GTX1060-6Gig: بین ۲ میلیون و سیصد الی ۳ میلیون و هفتصد هزار تومان
تا جایی که میتونید سعی کنید از کارتهای معروف به FE یا Founders edition خرید نکنید (این کارتها کلاک پایین تری دارن و کولینگ مناسبی هم ندارن و برای ترینینگ های طولانی مدت توصیه نمیشن مگر در یک حالت که جلوتر میگم). قیمت کارتهای Founders edition معمولا کمتر از نسخه های دیگه هست.فقط در صورتی از این کارتها استفاده کنید که یا قصد دارید چندتا کارت رو کنار هم استفاده کنید یا اینکه تهویه مناسب در کیس ندارید اصلا (از کارتهای اصطلاحا blower باید استفاده کنید یعنی مکش به بیرون داشته باشن نه کارتهایی که دو تا فن یا سه تا فن باز دارن اگر از اونها استفاده بخوایید بکنید حتما حتما باید جریان هوای کافی وجود داشته باشه و مستقیما چند فن به کارتها بزنن تا ثرمال ثراتل نکنن یا مشکلی پیش نیاد)
آپدیت :۱۸ فروردین ۹۶ :
خب یکی دوماهی میشه که سری کارتهای جدید انویدیا هم وارد شدن کارت GTX1080 TI 11 Gig رم داره و از تایتان ایکس سری مکسول قویتره و شونه به شونه تایتان ایکس پاسکال فعالیت میکنه (از یک معمای استفاده میکنن) .
در سری جدید کارت TitanXp وارد شده که هنوز ۱۲ گیگ حافظه داره اما پهنای باند و تعداد هسته های کودای اون افزایش پیدا کرده.
نکته خیلی مهم اینجاست که قیمت GTX1080TI هم رده قیمت GTX1080 شده و قیمت GTX1080 100 دلار حداقل کاهش پیدا کرده . تو ایران هم این کاهش قیمت رو شاهد بودیم و کارت ۳ میلیون و ۳۰۰ هزارتومنی یک شبه شده ۲ میلیون و ۳۰۰ هزارتومن.
در حال حاضر بهترین کارت از نظر قیمت /کارایی کارت GTX1080TI هست و در رتبه بعدی GTX1080 (اگه تایتان ایکس مکسول با قیمت مناسب گیر اوردید خوبه تهیه اش کنید وگرنه همین ۱۰۸۰) .
مابقی کارتها هم به باید کاهش قیمت رو داشته باشن طی ماه های آتی انشاءالله. پس در خرید کارتها این موارد رو در نظر داشته باشید.
آپدیت ۲۰ فروردین ۹۶ :
علاوه بر صحبتهایی که بالا شد پیشنهادات زیر هم هست که توسط تیم دتمرس تو وبلاگش عنوان شده . من پیشنهادات ایشون رو پایین میارم یکسری نکته هم در انتها گفتم بخونید .
پیشنهادات :
بهترین کارت گرافیک فعلی : Titan Xp
کمی گرونقیمت اما فوق العاده کارآمد : GTX 1080 Ti, GTX 1070, GTX 1080
خوش قیمت و کارایی خوب : GTX ۱۰۶۰ (۶GB)
اگر با دیتاست هایی بزرگتر از ۲۵۰ گیگابایت کار میکنید : Titan X Maxwell اگه دسته دوم گیر اوردید وگرنه Titan X Pascal اگر تفاوت قیمت با Xp فاحش نبود NVIDIA Titan Xp
اگه بودجه مالی کمی دارید : GTX 1060 6GB (ورژن ۳ گیگ اون هم هست اونو تهیه نکنید!اصلا)
اگه وضع بودجه مالی خیلی خرابه! : GTX 1050 Ti 4GB
اگر قصد شرکت در رقابت های کاگل رو دارید: GTX 1060 6GB برای رقابت های عادی مناسبه , اما برای رقابت های یادگیری عمیق GTX 1080 Ti پیشنهاد میشه.
بعنوان محقق حرفه ای بصورت تخصصی در حوزه یادگیری عمیق فعالیت میکنید : NVIDIA Titan Xp اگر تایتان ایکس مکسول یا پاسکال دارید نیازی به اپگرید نیست
اگر یه محقق هستید: GTX 1080 Ti. در بعضی شرایط مثل پردازش زبان طبیعی ممکنه , GTX 1070 یا GTX 1080 هم انتخاب خوبی باشن منتها حتما به نیازمندی های مدلهای فعلیتون توجه کنید
اگر قصد ایجاد یه gpu-cluster دارید یه نگاهی به اینجا بندازید
اگر دیپ لرنینگ رو تازه شروع کردید و بصورت جدی قصد دارید ادامه اش بدید : با یک GTX 1060 6GB شروع کنید و بعد بر اساس حوزه ای که بعدا انتخاب میکنید میتونید این کارت رو بفروشید و یه کارت مناسب تر تهیه کنید
تفننی میخوایید تست کنید ببینید چیه داستان! : GTX 1050 Ti 4 یا ۲GB
قیمت ها :
۱۰۵۰TI الان از ۸۱۵ هزارتومن تا ۱ میلیون قیتش هست که شما ارزون ترینش رو تهیه کنید. ارزشی نداره بابت این کارت پول بیشتری بدید.
۱۰۶۰ با ۶ گیگ رم هم از یک میلیون و دویست هزارتومن تا یک میلیون و پونصد هزار تومن قیمتشه.
۱۰۷۰ هم با ۸ گیگ رم از ۱ میلیون و نهصد تا دو میلیون و سیصد هزارتومن قیمتش هست
۱۰۸۰ هم با ۸ گیگ رم از ۲ میلیون و چهارصد (پیشنهاد ویژه) هزارتومن تا سه میلیون و سیصد هزارتومن هست
GTX980 هم قیمتی حدود یک میلیون تا یک میلیون و دویست هزارتومن داره(نو) بجای GTx1050 این کارت پیشنهاد میشه به احتمال قوی بصورت دسته دوم با قیمت مناسب میتونید از انجمن لیون کامپیوتر یا persiantools تهیه کنید.(هرچند پیشنهاد اولیه تهیه یه کارت خوبه و اگر هزینه نیست کارتهای دسته دوم میتونن به مراتب انتخاب بهتری باشن)
GTX1080 TI هم تا چند ماهه دیگه وارد بازار میشه . قیمت اون ۷۰۰ دلاره . داخل کشور بیاد به احتمال زیاد بجای قیمت فعلی GTX1080 میشینه یعنی قیمتی حدود ۳۱۰۰ تا ۳ میلیون و سیصد هزارتومن باید باشه . با ورود این کار کارتهای GTX1080 آف میخورن (باید بخورن قیمت جهانی اونا ۱۰۰ دلار حداقل کاهش داشته و ۴۵۰ دلار ۵۰۰ دلار فروخته میشن) . به همین نسبت میشه انتظار کاهش قیمت در کارتهای دیگه هم داشت .
سلام.بسیار متشکرم بابت جمع اوری وانتشار این مطالب بسیار مفید.ممنون میشم در صورت امکان در مورد کاربرد پردازنده هایی مثله FPGA در شبکه های کانولوشن
توضیحاتی بدید.
سلام .
کارتهای گرافیک در سیستم های کامپیوتری استفاده دارن اما وقتی شما بخوایید یک محصول ارائه کنید دیگه قرار نیست یه کارت گرافیک به همراه یک سیستم کامل هم در نظر بگیرید تنگ محصولتون! نه عملیه و نه عاقلانه! چون هزینه تمام شده محصولتون خیلی افزایش پیدا میکنه بکنار مسائل امنیتی و یا حتی مصرف توان هم چالش بزرگی میشه و از طرفی در بعضی موارد اصلا ممکن نیست
برای همین در سیستم های توکار (embedded systems) خبری از این کارتهای گرافیک قدرتمند نیست. برای این جور سیستم ها تا جایی که من اطلاع دارم از بوردهای خاصی مثل Tesla K40 , Jetson TX1 , Tesla K80 و… از انویدیا و یا FPGA ها استفاده میشه و بصورت اختصاصی برای کار مورد نظر مورد استفاده قرار میگیره .
البته این هم باید گفته بشه که FPGA ها محدودیت های پردازشی زیادی دارن برای همین اموزش یه شبکه عمیق و پچیده یا عملی نیست یا خیلی سخته برای همین یکسری معماری های جدید هم در این باره اومدن که شاید این مقاله خوندنش بد نباشه (تاکید روی بخش دوم و تاریخچه و کارهای انجام شده هست و خوندن مقالاتی مثل SqueezeNet )
این قبیل موارد رو بچه های برق و خصوصا بچه های سخت افزار کامپیوتر خیلی خوب میدونن من وارد نیستم زیاد.
از طرفی خوندن این مطلب و این مقاله و همینطور این لینک هم پیشنهاد میشه
سلام
ممنون از توضیحاتتون
یه سوال داشتم. من الان می خوام شروع کنم برای بحث deep learning و احتمالا هم با شبکه های RNN , LSTM برای داده های sequential. در کل پیشنهادتون استاده از cloud هست یا خرید gpu? من با تنسورفلو کار میکنم.
با تشکر
سلام
هزینه تمام شده برای خودتون رو باید ببینید. هرکدوم براتون صرفه بیشتری داره اونو انتخاب کنید.
در مورد cloud هم الان سرویسی فعلا فعال نیست تو ایران ولی بنظرم قراره اگر مشکلی پیش نیاد یکی از شرکتا تا قبل عید یه کارایی بکنه .قیمتها و پلن هاشو ببینید بعد بهتر میتونید تصمیم بگیرید.
سلام
به خاطر تحریم هاست؟ همه کلودها؟! آمازون-مایکروسافت؟ میشه اطلاعاتی از دلیل این عدم دسترسی توی سایت هاشون به دست آورد؟
بله هیچ شرکت خارجی ای از ایران پشتیبانی نمیکنه . مگر اینکه چینی باشه (در داخل خاک چین) که شاید اونها پشتیبانی کنن.
استفاده از شرکتهای خارجی بخاطر تحریم تا جایی که من اطلاع دارم ممکن نیست.
با سلام
دوستان جدیدا یه شرکت فعالیتش و تو ایران شروع کرده که کارت گرافیک مختلف برای یادگیری عمیق و یادگیری ماشین ارائه میکنه. من ازشون برای یه هفته سرویس گرفتم. شرکت آسا پرداز آریسا.من درخواست تخفیف کردم بهم دادن . حتی رم بیشتر از پلن هاشون نیاز داشتم برام کاستومایز کردن
سلام.
من سیستمشون رو دیدم برای یه سناریوی عملی قابل استفاده نیست.
هزینه بسیار زیادی طلب میکنن که اگه کسی بخواد اون هزینه رو بکنه خیلی راحت میتونه از سرویس دهنده های خارجی که از ایران پشتیبانی میکنن مثل فلوید هاب و… بهره ببره که چند برابر سخت افزار قوی تری ارائه میکنن (قابل قیاس نیست اصلا!)
سلام
توی microsoft azure اسم ایران هست. شما مطمئنید ساپورت نمیکنه؟ چطور میشه مطمون شد؟
سلام
azure انگار ساپورت نمی کنه.
سلام
میخواستم بدانم کارت گرافیک
aspeed graphics family (wddm) برای اجرای cnn در متلب یا caffe ضعیف می باشد؟
متشکرم
سلام
فقط کارتهای Nvidia بصورت رسمی پشتیبانی میشن
البته اگه پشتیبانی از OpenCL این کارت ارائه میکنه میتونید از برنچ OpenCL کفی استفاده کنید. ولی تا مشخصات کارت رو ندید نمیشه اظهار نظر کرد
سلام .
بنابر گفته هاتون در مورد کارت ۹۷۰ در صورتی که از دوتای این کارت همزمان استفاده بشه ، چقدر تاثیر داره ؟
سلام .
از لحاظ سرعت پردازش و اموزش خیلی سریعتر میشه اما در حال حاضر هیچکدوم از کتابخونه ها و چارچوب های یادگیری عمیق حافظه ها رو تجمیع نمیکنن. یعنی شما بعنوان مثال در کفی میتونید مدلی رو آموزش بدید که در حافظه هر کارت گرافیک جا بشه.(محدودیت رو حافظه کمتر مشخص میکنه)
بزارید یک مثال بزنم اگه دوتا کارت داشته باشید یکی ۴ گیگ یکی ۲ گیگ شما میتونید مدلی رو اجرا کنید که در ۲ گیگ جا بشه!
اینطور بعنوان مثال کفی میاد شبکه رو بصورت موازی روی دوتا کارت اجرا میکنه (و اندازه بچ شما دو برابر میشه) و نتایج ترکیب و خروجی بشما داده میشه .
تنها سودی که این کار داره سریعتر انجام شدن فاز اموزش هست .
حالا شما میتونید همین نکته رو در مورد ۹۷۰ هم تعمیمش بدید. یعنی شما دوتا کارت ۹۷۰ استفاده کنید اولا کماکان همون محدودیت ۴ گیگ حافظه رو دارید. و حتما شبکه شما باید فضایی کمتر از ۳٫۵ گیگ اشغال کنه تا بمشکل نخورید .
نکته مثبتش فقط این میشه که عملیات آموزش چند برابر سریعتر پیش میره
به همین دلیل هم هست که همییشه پیشنهاد میشه بجای استفاده از چند کارت گرافیک با حافظه کم از یه کارت گرافیک قوی تر با حافظه زیاد استفاده کنید. (مگه اینکه بدونید معماریتون زیر ۴ گیگ خواهد بود و کارتها هم ارزون یا در دسترس هستن . در این حالت خب دندون اسب پیش کشی رو نمیشمارن! و از هرچی دارن استفاده میکنن)
البته این نکته رو هم باید بگم که در بین فریم ورکها من تنها تنسورفلو رو دیدم که شما میتونید بار پردازشی رو مشخص کنید روی چه چیزی باشه . یعنی میتونید مشخص کنید کدوم بخش از کد شما روی کارت گرافیک ۱ کدوم روی سی پی یو و کدوم روی کارت گرافیک ۲ و الی اخر اجرا بشه
البته در ظاهر این خیلی خوبه اما در عمل بکار گیری اون همچین بدون چالش و راحت هم نیست.
من حدود یک سالی هست که تو این حوزه فعالیت میکنم من تقریبا سعی کردم توی چالش هایی که توسط kaggle برگزار میشه شرکت کردم ، اما به دلیل نداشتن کارت گرافیک درست حسابی نتونستم مدل های عمیق رو از scratch آموزش بدم و در بیشتر موارد از vgg16 و resnet استفاده کردم . هفته پیش یه مدل NLP رو روی اشعار حافظ آموزش دادم و نتایجی تقریبا خوبی گرفتم .
متاسفانه به علت تحریم امکان دسترسی به AWS نیست و بیشتر محققین ایرانی از این سرویس بهره مند نیستند .سوالم اینه اگه کسی تمایل به کار گروهی داره ؟
اگه حوزه کاری رو مشخص کنید و در گروه تلگرام مطرح کنید فیدبک مناسب رو فکر کنم بگیرید.
معمولا این چیزا رو تو گروه مطرح میشه
سلام با تشکر از مطالب مفید و سایت بسیار خوبتون
سوال من در مورد استفاده deep در حوزه ی صوت هست. چون صوت یک ارایه هست و مثل تصویر ماتریس نیست و اصولا حجم محاسبات شدیدا پایین میاد بازم نیاز به استفاده از کارت گرافیک هست برای اموزش؟
اگر جواب مثبته چه کارتی مناسبه؟
با تشکر
سلام
بحث همیشه روی اندازه ورودی نیست . به معماری خیلی زیاد بستگی داره و معمولا همین مساله اس.
بسته به بودجه و کاری که میخوایید انجام بدید میشه پیشنهادهای مختلفی داد .
من یکسری پیشنهاد در همین بخش دادم و میتونید با همین سلسله مراتب پیش برید .
سلام .
وقت بخیر و خسته نباشید .
من فعلا رو کارت گرافیکی لپتاپم می تونم حساب کنم
Geforce GT 640M Le
میشه لطفا نظرتون رو بگید و بفرمایید تا کجا می تونم باهاش پیش برم ؟
سلام .
تست کردن برای شما ضرری نداره . برای تست های اولیه مشکلی نیست میتونید استارت بزنید آشنا بشید با این حوزه و با کفی یا تنسورفلو و… و خودتون ببینید مراحل ترینینگ با توجه به دیتاستتون و معماری انتخابی چقدر طول میکشه .
اما اینکه بخوایید واقعا وارد فاز تحقیقاتی بشید تو این زمینه قطعا به مشکل میخورید. چون یک بخش فاز تحقیقات تست و آزمایش و استفاده از دستاوردهای قبلی تو این زمینه اس مثل معماری های بهتر الگوریتم های بهتر و…
و اینها بطور خلاصه به معنی افزایش بار پردازشیه(عموما و نه الزاما همیشه).
فقط هم بحث مثلا حافظه نیست که معماری من تو حافظه جا بشه، بحث مدت زمان مورد نیاز برای اموزش هم هست. شما قائدتا دوست دارید که خیلی سریع بتونید با پارامترهای زیادی که دارید بازی کنید و ایده های مختلفتون رو پیاده کنید. این فقط وقتی میسره که شما سخت افزار خوبی داشته باشید تا زمان زیادی رو از دست ندید برای هر تست! برای همین به این مسائل توجه کنید تاا بعدا مشکلی براتون نباشه .
من خودم اول با یه GTX750 استارت زدم و تقریبا ۶ماه باهاش ادامه دادم و بعد دیگه واقعا نمیتونم و زمان خیلی زیادی ازم میگیره اموزشها و دستم خیلی میبنده و بعد ۶ ۷ ماه مجبور شدم یه کارت گرافیک قویتر بگیرم. شما هم میتونید این مسیر رو برید با چیزی که دارید استارت بزنید بعد در ادامه ارتقا بدید اگر دیدید لازمه براتون.
[…] بخش اول : کدام کارت گرافیک برای یادگیری عمیق مناسب است؟… […]
سلام من کارت گرافیک لپتابم مدل زیر هست
NVIDIA GeForce GT 940M 2GB
بنظرتون جوابگو هست؟
سلام .
با کارت شما میشه اجرا گرفت اما فقط مدلهای خیلی سبک و کوچیک .
بهترین کار برای اینکه متوجه کاستی کارتتون بشید اینه که سعی کنید یکسری مثال رو اجرا کنید.
محدودیت ۲ گیگابایت کارت سوای قدرت پایین اون، باعث میشه بشدت تو زمینه استفاده ازمعماری های جدید یا باز بودن دستتون تو اعمال تغییرات محدود بشید. برای همین تمام کارتهایی که مثال زدیم حداقل حداقلش ۴ گیگ معرفی شدن.
نکته بعدی زمان اجرا هست. اینکه میگیم فلان کارت خوب نیست از لحاظ پردازشی بخاطر اینه که زمان زیادی طول میکشه تا یک عملیات رو انجام بده و در زمان تحقیق و تست شما دنبال این هستید که سریع نتیجه کار رو ببینید. نه اینکه برای هر تغییر کوچیکی مدت خیلی زیادی صرف بشه.
برای همین اگه بصورت جدی بدنبال کار و تحقیق تو این حوزه هستید بشدت پیشنهاد میشه دنبال تهیه کارت قدرتمندتری باشید بر اساس نکاتی که بالا گفته شد .
با سلام و عرض ادب و احترام
دو تا سوال از خدمتتان داشتم. اول اینکه آیا هنوز سامانه Cloudای در ایران راه اندازی نشده که سرویس های پردازشی دیپ لرنینگ رو ارایه بده؟
دوم اینکه شما فرمودید که سایز بچ تاثیر زیادی بر روی دقت نهایی مدل ها می گذاره؛ می شه لطفا در این مورد یکمی بیشتر توضیح بدید؟ یعنی مثلا معمولا خوبه که سایز بچ رو چقدر انتخاب کنیم (با چند تا epoch)؟ اگر به دلیل کم بودن حافظه کارت گرافیک مجبور شدیم که سایز بچ رو کم انتخاب کنیم؛ چه راه حلی براش وجود داره تا مدل دقتش افزایش پیدا کنه؟
ممنون از لطف شما
سلام
تا جایی که من اطلاع دارم هنوز خیر.
اندازه epoch که حکم کلی نداره و وابسته به دیتاست و معماری شماست . اما اندازه بچ معمولا بین ۶۴، ۱۰۰ تا ۵۱۲ بسته به دیتاست پیشنهاد میشه .
اندازه دیتاست نباید خیلی کوچیک باشه و نباید خیلی بزرگ باشه . قبلا یک مقاله در این مورد کار کرده بود و نتایجش رو ارائه کرده بود الان اسمش خاطرم نیست اما یادم میاد تو بخش پرسش و پاسخ این مطرح شده بود و اونجا جواب دادم . یک سرچ کنید اونجا رو باید بتونید پیدا کنید.
چیزی که اهمیت داره بچ ترینینگ هست . برای همین وقتی حافظه کم باشه بچ تست رو کم میکنن . در حالتی که باز مشکل باشه کلا تست در حین ترینینگ انجام نمیشه (روی ولیدیشن ست منظورم هست) تا اینکه ترینینگ تا یک تعداد ایپاک خاصی پیش بره بعد جداکانه تست میگیرن .
خود کفی هم یک تنظیمی در بخش solverش هست که اجازه میده بچ موثر از ضرب تکرار در بچ، مشخص بشه . یعنی شما نمیتونی مثلا از بچ ۱۲۸ استفاده کنی. میایی بچ رو مینویسی مثا ۶۴ بعد در سالور یک اندازه تکرار مشخص میکنی که هرچند تکرار اون اندازه بچ شما بدست بیاد . مثلا برای رسیدن به بچ ۱۲۸ ما دوتکرار نیاز داریم انجام بشه روی بچ ۶۴ . پس مینویسیم iter_size: 2 .
با سلام
من میخواستم از طرف دانشگاه برای کارهای در حد پروژه دکتری، یک gpu تهیه کنم اینجور که از نوشته های شما متوجه شدم GTI 1080 TI برای این زمینه مناسب هست، درسته؟
سلام . بله صد در صد .
فعلا چون در بازار ایران TitanXp وجود نداره و تا جایی که اطلاع دارم لیون کامپیوتر سری GTX 1080 TI رو فقط آورده اونم با قیمت خیلی خوب. این کارت پیشنهاد میشه . الان تایتان ایکس ۳۲۰۰ تا ۳۴۰۰ فروش میره (چند ماه پیش این قیمت سری ۱۰۸۰ بود که تقریبا نصب این کارت قدرت داره )
ممنونم از جوابتون، بعد ببخشید چطور باید تهیه کنم؟ یا جایی میشناسید که مطمین باشه؟
بله میتونید از لیون کامپیوتر تهیه کنید که کاملا مطمئن هست http://lioncomputer.ir
سلام. خیلی ممنونم به خاطر توضیحات جامع و کاملتون. واقعا مفید بود.
فقط یک سوالی داشتم از خدمتتون:
اینکه لب تاب من یک لب تاب قدیمی دل هست. که cpu T6670 – 2.20GHz داره و گرافیکشم یکه!! با توجه به این موضوع و با توجه به قیمتهای بالای کارتهای گرافیک به نظرتون مناسب تر اینه که لب تاب جدیدی خریداری بشه یا اینکه میشه همین سیستم رو به حد قابل قبولی ارتقا داد؟
سلام
بله قیمتهای کارت گرافیک بخاطر بیت کوین ماینینگ خیلی بالا رفته الان بهترین کار استفاده از سرویس رایگان گوگل https://colab.research.google.com و یا سرویس پولی https://www.floydhub.com/ هست که ایران رو پشتیبانی میکنه .
به غیر از اینها بله خرید یه لپ تاپ الان عاقلانه ترین کار هست.
درباره این سرویسها یک توضیح مختصری میدید؟
و اینکه درخرید لب تابی که مناسب کار در زمینه یادگیری عمیق باشه اگر نکته خاصی باید مورد توجه باشه ممنون میشم بگید؟ حتی اگر ممکنه بگید چه مارکهایی از لب تابها خوبن؟
سلام در نظر دارم یک پست در این باره بدم اما فعلا یکم سرم شلوغ هست .
این سرویس های ابری هستن برای اجرای پروژه های دیپ لرنینگ میتونید استفاده کنید. اولی سرویس رایگان گوگل هست که یکی از بچه ها قبلا توضیحش رو داده اینجا بخونید خیلی خوبه : http://smalek.blog.ir/1396/11/11/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C-%DA%AF%D9%88%DA%AF%D9%84-%DA%A9%D9%88%D9%84%D8%A8-Google-Colaboratory
علاوه بر اون سرویس دوم هم مثل امازون aws یک سرویس ابری هست که میتونید سرویس تهیه کنید و برای اجرای پروژه های خودتون استفاده کنید. قیمتهاش هم خوبه و مهمتر از بقیه اینه که از ایران هم پشتیبانی میکنه .
در مورد لپ تاپ برای حوزه یادگیری عمیق دقت کنید که کارت گرافیک قوی(از کارتهای انویدیا باشه نه amd) داشته باشه (مدلها بالا قید شدن و اینکه چه نکاتی باید لحاظ بشن گفته شده ) بعد انتخاب میتونید یکبار دیگه هم سوال کنید تا مطمئن بشید .
سپاسگزارم از راهنماییهاتون. ممنون.
سلام لپ تاپی که من دارم کارت گرافیک جی فورس ۹۲۰ داره میخواستم بدونم این کارت گرافیک برای دیتا بیس با حجم داده کم می تونه پاسخگو باشه برای شروع کار. چون برای ذیتا بیس اصلی دانشگاه جی پی یو در اختیارم قرار میدهد
سلام
برای استارت اولیه و آشنایی مقدماتی خوبه مشکلی نباید داشته باشید (البته این کارت قوی ای نیست ولی خب برای استارت میتونید استفاده کنید)
[…] افزار و بستر مورد نیاز جهت آموزش مدلهای عمیق است. در دو مقاله قبلی ما به بررسی کارتهای گرافیک مناسب پرداختیم و سعی کردیم تا […]
ممنون از توضیحات مفیدتون
من روی سیستمم یک gtx1050ti دارم. احتمالا برای پایان نامه ی ارشد بخوام بخشی از کار رو با caffe انجام بدم. با خوندن این مطلب واقعا نگران شدم که به مشکل بخورم.
به نظرتون لازمه که کارت گرافیکم رو عوض کنم؟ و اگر مجبور به تعویض کارت بشم آیا باید تمام مراحل نصب caffe رو از اول انجام بدم ؟؟
سلام
اینکه تعویض کنید یا نه بستگی به کار خودتون داره . کارتون رو استارت بزنید بعد اگر دیدید کفاف کار شما رو نمیده تعویضش کنید
برای شروع دوباره پیشنهاد میکنم از نسخه لینوکس استفاده کنید که هم از کودا تولکیت ۹ و هم cudnn 7 پشتیبانی میکنه که خیلی بهبود نسبت به کودا ۸ و cudnn v5.1 دارن. نسخه ویندوز کفی ماه هاست که بروز نشده و برای اینکه آخرین بهبودها رو داشته باشید بهتره از لینوکس استفاده کنید
اما اینکه کارت گرافیک عوض شد آیا کفی نیاز به کامپایل مجدد داره یا نه بله
من در حال حاضر با اوبونتو ۱۶.۰۴ کار میکنم و از تولکیت های cuda9 و cudnn7 رو هم نصب کردم. اما برای نصب لینوکس و درایور nvidia و انواع ملزومات کفی مثل همین cuda و cudd و opencv و … خیلی اذیت شدم و چندین روز وقتم روگرفت.
حالا اگر من کارتم رو عوض کنم تمام این مراحل رو باید از اول انجام بدم یعنی ؟؟
ببخشید چندین غلط املایی دارم.
سلام. نه . کودا و cudnn رو نیازی به پیکربندی دوباره ندارید حتی اگر هم داشته باشید هیچ نگرانی نداره حذف اونها و استفاده از ورژن جدید خیلی ساده است. برای درایور هم جای نگرانی نیست . بعید میدونم نیازی به نصب دوباره درایور داشته باشید (خود من که از ۹۸۰ به ۱۰۸۰ رفتم هیچ مشکلی نداشتم)
البته اگه خدا بخواد من تا اخر امشب یک آموزش کامل برای نصب کودا و درایور و… در اوبونتو ۱۶.۰۴ قرار میدم و بعدتر فیلمی هم که موقع نصب کردن رو سیستم خودم گرفتم میزارم .
سعی کردم قدم به قدم توضیح بدم یه گام هایی نیازه و چرا و قبل و بعد اقدام به نصب چکار باید کرد.
خیلی ممنون از اینکه وقت میذارین و به سوالات پاسخ میدین.
من همیشه برای نصب و یادگیری نرم افزارها به انگلیسی سرچ می کردم چون معمولا در سرچ فارسی نتیجه ی به درد بخوری حاصل نمیشد.
به صورت اتفاقی با این سایت آشنا شدم و واقعا خوشحالم که پیداش کردم. یک محیط علمی با حضور افراد متخصص و باتجربه که می تونم سوالاتم رو به سادگی مطرح کنم و به سرعت پاسخ بگیرم.
بی نهایت سپاسگذارم و خدا رو شکر میکنم به خاطر وجود چنین افرادی در جامعه ی علمی کشور
سلام
خواهش میکنم.
آموزش نصب درایور و کودا تولکیت و cuDNN در اوبونتو ۱۶٫۰۴ در سایت قرار گرفت.
سلام دوست عزیز.
سپاس و تشکر بابت مقاله خوبتون.
من یک سوال داشتم و اون این هست که با توجه به اینکه لیست کارتهای گرافیکی که معرفی فرمودید مربوط به سال ۹۶ هست خواستم بدونم الان توی اردیبهشت ۹۷ بهترین کارت گرافیک موجود در بازار چی هست؟ و در چه بازهی قیمتی؟
خیلی خیلی ممنون میشم از راهنماییتون.
سلام
نه کارتهای جدید هنوز وارد بازار نشدن و کما فی السابق همون کارتهای قبلی پیشنهاد میشن.
اول تایتان ایکس پی . بعد ۱۰۸۰TI بعد ۱۰۸۰ و الی اخر.
سلام
ممنون بابت توضیحات کاملتون
من چون دانشجو هستم مجبورم که لپتاپ تهیه کنم و خب گرافیکهایی گفتید با قیمتهای لپتاپها اصلا دانشجویی نیستند 🙂
مورد بعدی در مورد حافظه هست
من برای ارشد باید روی تصویر کار کنم و خب با تمام محدودیت ها باید خریدی کنم که واقعا پاسخگو باشه
به نظر شما متعادل ترین کارت گرافیکی برای این حوزه هست چه مدلیه؟ متعادل هم از نظر قیمت و هم از نظر کارایی
ممنون
سلام
متاسفانه قیمتها نامنصفانه بالا رفته هم بخاطر بیت کوین و هم دلار.
چندتا کار هست که میشه انجام داد منتها اول بودجه تقریبی خودتون رو بگید تا بشه بهتر راهنمایی کرد .
هرچی کمتر قاعدتا بهتره اما پول فشار بیاره بهتر از خریدن چیز به درد نخوره.
تا چهار پنج میلیون منطقیه برام. بیشتر شدنش بستگی به میزان کارایی که لازمه یعنی ی میلیون به زور دادن بهتره ی چیزی بخرم جوابگو نباشه
سلام
همه تمرکزتون روی تهیه لپ تاپی باشه که حداقل GTX1060 با ۶ گیگ حافظه باشه (نسخه ۳ گیگابایتی اون هم هست) . و وقتی لپ تاپی رو دیدید حتما تو اینترنت سرچ کنید تو بنچ مارکها ببینید چطوره .
اگر واقعا دیگه نتونستید چیزی پیدا کنید GTX1050TI با ۴ گیگ رم رو بخرید. یادتون باشه الان اکثر مدلها فضای رم زیادی میگیرن و اذیت میشید احتمالا تو تست و کار (چون ماهیت کار تحقیقاتی هست)
میتونید با سویچ کردن روی پای تورچ تا حدی این مساله رو برطرف کنید چون مدیریت حافظه پای تورچ فوق العاده است . معماری ای که در کفی یا تنسورفلو مثلا ۴ گیگ فضا میگیره اینجا ۲ گیگ فضا اشغال میکنه و شاید کمتر
ولی باز با همه این تفاسیر بشدت توصیه میشه از کارتی که حافظه بیشتری داره مثل ۱۰۶۰ و یا بیشتر استفاده کنید و فقط در صورتی که دیگه راهی نیست به کارت کمتر بسنده کنید.
ضمنا اگر ممکنه سعی کنید دنبال یه لپ تاپ دسته دوم باشید اگر مقدوره با گرافیک ۱۰۷۰ یا ۱۰۶۰ که شاید (اگر مورد خوب و سالمی باشه) بهتر بکارتون میاد.
سری های acer معمولا قیمت بهتری با توجه به کانفیگ ارایه میکنن اما شما خوب تحقیق کنید.
[…] افزار و بستر مورد نیاز جهت آموزش مدلهای عمیق است. در دو مقاله قبلی ما به بررسی کارتهای گرافیک مناسب پرداختیم و سعی کردیم تا […]
سلام. من برای پایان نامه ام از یادگیری عمیق استفاده میکنم. اول کار هستم و میخوام لپ تاب بخرم. با توجه به وضیعیت الان بازار و قیمت ها هزینه زیادی نمیتونم بدم بیشتر از ۱۰ تومن هم اصلا مقدور نیسیت. به نظرتون چه مدلایی میتونم بخرم با توجه به اینکه خیلی از مدل ها ناموجوده تو بازار؟
سلام. خرید لپ تاپ که اصلا ممکن نیست . تنها راهی که شما دارید استفاده از PC هست .
که خیلی مقرون به صرفه تر از لپ تاپ میتونید یه سیستم اماده کنید.
اگه منزل PC دارید کافیه یه کارت گرافیک واحتمالا یه پاور بگیرید
و سعی کنید یه گرافیک دسته دوم بگیرید مثلا با ۲ ۳ تومن یه ۱۰۷۰ میتونید بگیرید (یا یه ۱۰۶۰ نو)
پاور هم حدود ۵۰۰ الی ۷۰۰
و دیگه مشکلی ندارید .
اگه PC هم ندارید میتونید یه سیستم دسته دوم از ایسام بگیرید (هم میتونید مادربرد و سی پی یو و… بگیرید و هم کیس کامل) برای این هم سعی کنید از سری هزول یا همون سوکت ۱۱۵۰ استفاده کنید (رم ddr3) تا از نظر قیمتی براتون خیلی بصرفه تراز نسل جدید باشه.از ۲ تومن تا ۳ ۴ تومن کیس هست که اگه خوب انتخاب کنید و پاور و رم مناسب داشته باشن میمونه یه گرافیک که اونو تهیه میکنید و تمام.
یکسری کیس آماده هم هست مثل این مورد که خیلی خوبه . بتونید همینم بگیرید خوبه .ولی بگردید تو حوزه قیمت ۱۰ تومن ۱۱ تومن موارد دیگه هم هست. ولی حتما مشخصات سیستم رو دقیق بگیرید (این سری ۱۱۵۰ هست رم ddr3 . )
سلام
ممنون از مطالب خوبتون
يه سوال دارم: شما گفتيد كارت گرافيك حداقل ۶GB. آيا اين كارت گرافيك رو كه نو ديجي كالا هست تاييد ميكنيد؟
سازنده پردازنده گرافیکی
NVIDIA
مدل پردازنده گرافیکی
GeForce GTX 1050 Ti GDDR5
حافظه اختصاصی پردازنده گرافیکی
۴GB
كار من در زمينه ديپ لرنينگ با ديتاي بزرگ هست.
با تشكر
سلام. برای استارت بد نیست اما برای تحقیقات اذیت میشید هم از نظر سرعت پردازش هم از نظر محدودیت حافظه .
اگه میتونید هزینه بیشتر کنید یکم بزارید روش سعی کنید یه ۱۰۶۰ حداقل بگیرید یا اگه میتونید یه ۱۰۷۰ بگیرید (کارتهای دسته دوم هم بتونید بگیرید خیلی خوبه ولی سعی کنید گارانتی داشته باشن حتما )
اگه واقعا نمیتونید بیشتر هزینه کنید دیگه با همین برید جلو
با سلام
من میخوام در مورد Echo state network و Liquid State Machine مطالعه کنم ولی با خواندن مقالات چیزی دستگیرم نشد. فیلم اموزشی فارسی میتونید بهم معرفی کنید ؟ یا چیزی که بتونم با خوندنش متوجه بشم کامل ؟ ممنون از راهنماییتون.
سلام. نه متاسفانه من منبع فارسی نمیشناسم
سلام
من تازه میخوام تو این زمینه کار کنم برای پایان نامه ام میخوام از معماریVGG16 برای شناسایی و طبقه بندی تصاویر استفاده کنم خواستم بدونم به کارت گرافیک خیلی قوی نیاز دارم یا با کارتgforce 840m که دارم میتونم کام رو راه بندازم؟
درضمن دیتاستی که دارم یه بخش train داره میتونم از اون استفاده کنم؟
سلام.
VGGNetیکی از سنگین ترین و غیربهینه ترین معماری هاست. الان معماری های مختلف و جدیدتری اومدن که سربار خیلی کمتری دارن و دقت مناسب تری هم ارایه میکنن به اونها نگاه بندازید و سعی کنید از اون استفاده کنید.
گرافیکتون ضعیفه کلا ولی اینکه برای کار شما مناسب هست یا نه بسته به ماهیت کارتون (و شرایطی مثل اندازه دیتاست و شبکه انتخابی شما) داره .
من نمیدونم دیتاست شما چیه اما معمولا یک بخش برای ترینینگ هست که با اسم train مشخص میشه و یک بخش هم برای test که از تست یا validation براش استفاده میشه (بعضی ها هم ولیدیشن جدا و تست جدا دارن . بعضی ها هم کلا یک پوشه از تصاویر هستن که خودتون باید یک بخشی رو برای ترین استفاده کنید و یک بخشی رو برای تست یا ولیدیشن (معمولا به نسبت ۲۰ ۸۰ یا ۳۰ ۷۰ جدا میکنند و استفاد میکنند )
در هر صورت باید به صورت مساله اتون بپردازید و ببیند اونجا چی مطرح شده.
سلام
از اینکه وقت میذارید و به سوالات پاسخ میدید کمال تشکر رو دارم.
اگه امکانش هست معماری جدیدی که بهینه هست و به گرافیک زیادی هم نیاز نداره معرفی کنید؟
من ۲ تا دیتاست دارم (۱گیگ و ۴ گیگ) که تصاویری از حالت های مختلف رانندگان هست و میخوام اینا رو دسته بندی کنم(مثلا خوردن یا صحبت با موبایل)
سلام
از اینکه وقت میذارید و به سوالات پاسخ میدید کمال تشکر رو دارم.
اگه امکانش هست معماری جدیدی که بهینه هست و به گرافیک زیادی هم نیاز نداره معرفی کنید؟
من ۲ تا دیتاست دارم (۱گیگ و ۴ گیگ) که تصاویری از حالت های مختلف رانندگان هست و میخوام اینا رو دسته بندی کنم(مثلا خوردن یا صحبت با موبایل)
معماری های زیادی وجود دارند. هم میتونید از انواع رزنت استفاده کنید هم موبایل نت و هم سیمپل نت ۲ (که البته این مدل از پیش ترین شده ایمیج نت نداره)
سرعت اینها و مصرف حافظه اشون از ویجی جی نت (بسته به مدل انتخابی ) خیلی بهینه تره.
رزنت ۱۸ دقتی در حد وی جی جی نت ۱۶ میده و موبایل نسخه ۱ هم انواع مختلفی داره (نسخه دوم اون هم هست و میتونید استفاده کنید)
سلام و عرض ادب
من تازه میخوام وارد حوزه یادگیری عمیق بشم و فقط به پایتون مسلطم. الان که دنبال مطلب بودم متوجه مشکل GPU شدم بنده cpu و گرافیکم amd هست الان با این مطالب یکم سردرگم شدم آیا با استفاده از سرورهای مجازی و ابری میتونم کار کنم ی باید حتما سخت افزار مناسب رو تهیه کنم؟
سلام.
دیفالت کار ما فعلا با کارتهای انویدیا هست اما فریم ورکهای معروف پشتیبانی غیررسمی از کارتهای گرفیک AMD و INTEL رو دارن .
سرورهای معمولی بدرد کار شما نمیخورن باید از gpu server ها استفاده کنید . در حال حاضر بهترین قیمت رو میتونید از vast.ai بدست بیارید که خیلی عالیه.
floyd hub هم هست که فکر میکنم ایران رو پوشش بده اما قیمتش خیلی بیشتره .
امازون aws و گوگل کولب هم هست که در سایت معرفی کردم .
اینها اپشنهای شماست برای خدمات ابری .
اگه رو سیستم خودتون میخوایید ترین کنید اول مشخص کنید چه فریم ورکی میخوایید کار کنید بعد نسخه مبتنی بر OPenCL یا rocm رو بگیرید.
تنسورفلو الان رو بورسه و از نظر کاربر و اموزش و منابع براش اوله . نسخه rocm که از کارتهای AMD پشتیبانی میکنه رو میتونید از اینجا بگیرید
در حال حاضر (یعنی ۸ دی ۱۳۹۷) این کارتها پشتیبانی میشن :
https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md
اگر از کفی میخوایید استفاده کنید نسخه OpenCL اش هم هست که از ریپازیتوری اصلی میتونید دانلود کنید.
ممنون از راهنمایی و توجهتون
بله تنسورفلور مد نظرم هست که به بهترین شکل شما جهت دادید
تشکر
سلام و وقت بخیر.تشکر بابت توضیحات کامل شما.در رابطه با GPU های معرفی شده منبعی میشناسید که مادربوردهای سازگار با کارت گرافیک ها رو گفته باشه ممنون.
سلام. برای خرید مادربرد باید به چیپست مادربرد و پشتیبانی از نسل PCI-Express ش نگاه کرد. الان تقریبا همه مادربردها طی ۷ ۸ سال اخیر از PCI-Express 3 پشتیبانی میکنند. (نسل جدید نسخه چهارم هست که قراره همراه با سری جدید پردازنده های اینتل و AMD معرفی بشه که فعلا مهم نیست)
چیپست و کیفیت مادربرد مهمه. هر وقت خواستید چیزی تهیه کنید میتونید از همینجا مشورت بگیرید.
سلام و وقت بخیر.تشکر بابت پاسحگویی شما.من دانشجو هستم و قصد دارم برای پایان نامه ارشد روی یادگیری عمیق کارکنم.ممنون میشوم بنده رو راهنمایی کنید باتوجه به بودجه و سیستمی که دارم قصد خرید کارت گرافیک gtx1070 را دارم.مشخصات سیستم من به این شل است:
cpu=Intel corei5 3.20 GHZ
Memory=8G
mother board=GA-P85-D3
Chipset=Intel® B85 Express Chipset
۱ x PCI Express x16 slot, running at x16
(The PCI Express x16 slot conforms to PCI Express 3.0 standard.)
Multi-Graphics Technology=Support for AMD CrossFire™ technology
نمیدونم که موارد لازم ور نوشتم یا نه
یک پاور green 430w دارم
ممنون میشم نظرتون رو بگید.تشکر
سلام. بجای ۱۰۷۰ بدنبال ترجیحا بدنبال خرید کارت RTX2060 باشید یه پرس و جو بکنید اگه بود حتما اینو بگیرید چون به مراتب سریعتره (من اطلاعات خرید رو بروز کردم میتونید بخونید)
گذشته از این برای مادربرد انتخابتون خوب نیست چیپست B85 یکی از ضعیف ترین چیپست ها.موقع خرید مادربرد یا انتخاب مادربرد سعی کنید مادربردهایی انتخاب کنید که چیپست از سری H یا Z باشه .
سری B مخصوص افیس هست و از نظر ویژگی و قابلیت خیلی ضعیفه. میتونید از مادربردهایی که از چیپست H87 دارن استفاده کنید یا اگه میتونید هزینه کنید سری Z97 (دقت کنید اینها مربوط به نسل haswell هستن یا سوکت ۱۱۵۰ با حافظه DDR3)
پیشنهاد اینه یا از سری AMD (رایزن انتخاب کنید که الان خیلی عالین) یا اگه از اینتل میخوایید بگیرید سعی کنید سوکت ۱۱۵۱ بگیرید(حافظه DDR4) .h270 یا h370 خوبن.
برای پاور هم ۴۳۰ وات ضعیفه حداقل باید یه پاور ۵۵۰ الی ۶۰۰ وات بگیرید . (ترجیحا ۶۰۰ وات بگیرید)
سلام.کارت گرافیک Geforce MX110 که DDR5 ،۲GBو با معماری ماکسول هست، آیا میتونه پاسخگوی یادگیری عمیق در پزشکی باشه؟ Tensorflow رو اجرا میکنه؟؟ توی یک سایت درباره اش نوشته:
It’s performance is on a par with (as same as) the Geforce 920MX
سلام
نه کارت بسیار ضعیفی هست و از نظر حجم حافظه و قدرت پردازش بشدت محدوده.
برای اجرای مثال های پیش پا افتاده میتونید استفاده کنید اما اینکه روش بخوایید حسابی باز کنید برای تحقیقات اصلا فکرش هم نکنید.
از سرویس ابری رایگان گوگل کولب که آموزشش در سایت هست هم میتونید برای یادگیریو اجرای مثالها استفاده کنید (حتی برای پیش برد بخشی از کارهاتون)
اما این کارت بسیار ضعیفه.
سپاسگزارم
سید جان نظرت در مورد Geforce MX130_GDDR5-2GB چیه؟ خیلی فرقی میکنه با MX110؟؟
سلام.
من بالا توضیح دادم تو زمینه انتخاب کارتهای گرافیک شما نباید معیارتون گیم باشه. برای دیپ لرنینگ دوتا معیار پهنای باند و حافظه کارت گرافیک خیلی اهمیت داره.
این کارت در اصل کارت rebrand شده MX130 ری برند شده GT940MX و MX110 هم ری برنده شده GT920MX GP هست.(لینک) ۶۴ بیتیه و پهنای باند محدودی داره از طرف دیگه مقدار حافظه ای هم که ارائه میکنه تنها ۲ گیگابایته و این مقدار خیلی کمه. و از half precision و امثالهم که توضیحاتش رو دادم پشتیبانی نمیکنه.
برای اجرای مثالهای ابتدایی میتونید استفاده کنید چون compute capability 6.1 داره اگر اشتباه نکرده باشم اما اصلا روش برای کار تحقیقاتی حساب باز نکنید.
ممنونم سیدجان. اجرکم عندالله.
سلام. من برای پایان نامه ام از یادگیری عمیق در پردازش تصاویر استفاده میکنم. اول کار هستم و میخوام لپ تاب بخرم. نهایتا ۱۵ تا ۱۷ میلیون می تونم هزینه کنم. به نظرتون چه مدل هایی میتونم بخرم با توجه به اینکه خیلی از مدل ها تو بازار موجود نیست؟
سلام
برای یادگیری عمیق لپ تاپ اصلا پیشنهاد نمیشه بطور ویژه این مدلی که اسم بردید اصلا مناسب نیست. چون کارت گرافیک اینتل داره که هم بشدت ضعیفه و هم تو حوزه یادگیری عمیق نمیتونید ازش استفاده کنید. علاوه بر این چون هزینه خیلی بیشتری تحمیل میکنه و با هزینه ایکه برای لپ تاپ میخوایید بکنید میتونید یه کانفیگ به مراتب بهتر با یه PC Desktop تهیه کنید.
مثلا قطعات زیر برای یه PC قیمتی بین ۱۶ تومن براتون داره :
سی پی یو : Intel Core i5 7500 قیمت ۲۵۰۰ انتخاب های بعدی (۸۷۰۰k و ۹۹۰۰k )
مادربرد: PRIME Z270-A با قیمت ۲۳۷۰ (اما اگر سی پی یور ۸۷۰۰ یا ۹۹۰۰ گرفتید باید مادربرد ASUS TUF Z390-PRO GAMING LGA1151 Z390 قیمت : ۵۲۵۰ (لینک) رو بگیرید
گرافیک: RTX2060 قیمت ۶۵۰۰ (انتخاب بعدی RTX2070 قیمت ۹۷۰۰ )
رم : ۱۶ گیگ رم DDR4 باس ۲۴۰۰ قیمت ۱۵۰۰ (لینک) اگر سی پی یو های ۸۷۰۰ اینتل رو بالاتر رو گرفتید میتونید این رم رو بگیرید ولی بهتره باس بالاتر مثل ۳۲۰۰ و… رو بگیرید تا کارایی بهتر بشه ( DDr4 3200 قیمت ۲۵۰۰ تومن (لینک ))
هارد دیسک : ۲ ترابایت وسترن دیجیتال آبی (۷۲۰۰ rpm ) 750 الی ۸۰۰
SSD: سامسونگ ۸۶۰EVO باظرفیت ۵۰۰ گیگابایت قیمت ۱۱۶۰ (لینک) گزینه دیگه nvme هست که بالای ۲ تومنه
PSU: پاور گرین ۷۵۰ وات قیمت ۱۴۰۰ (لینک) (البته میشه برندهای معتبر تر هم گرفت ولی گرین هم خوبه)
CASE: بین ۶۰۰ الی ۱ میلیون.
اگر میخوایید گرافیک بهتری داشته باشید و اگر دیتاست شما حجمش زیاد نیست میتونید SSD 256 گیگی بگیرید که حدود ۵۰۰ الی ۷۰۰ هست (یا اصلا نگیرید اگه حجم دیتاستتون زیر ۱۰۰ گیگه )
به همین شکل میتونید بجای core i5 7500 یه corei3 7100 بگیرید (لینک) با قیمت ۱۷۰۰
و یه کیس خوب ۵۰۰ ۶۰۰ تومنی بگیرید میبینید براحتی میتونید بجای RTX2060 یه RTX2070 بگیرید که چند برابر سریعتر از RTX2060 ئه.
اگه منزل PC داشته باشید که میتونید صرفا گرافیک و رم و شاید سی پی یو رو ارتقا بدید و خیلی زیاد تو هزینه کردتون صرفه جویی بشه.
اگر به هر دلیلی اصرار بر گرفتن لپ تاپ دارید باید دور این لپ تاپ خط بکشید و دنبال لپ تاپهایی باشید که کارت گرافیک انویدیا داشته باشن(با توجه به توضیحاتی که داده شده بالا) و حتما برای کولینگ مناسبش باید فکر کنید چون احتمال آسیب زیاده اگر کولینگ مناسب نداشته باشید.
دستگاه microsoft surface pro 6-gg برای یادگیری عمیق جواب می ده یا نه؟
سلام.
همونطور که بالا عرض کردم خیر .
مناسب نیست اصلا و به هیچ وجه تهیه نکنید
کلا microsoft surface pro جواب می دهند؟
خیر مناسب نیست تهیه نکنید
سلام و خسته نباشید
ممنون بابت مطالب بسیار آموزنده و مفیدتون
غرض از مزاحمت میخواستم بپرسم آیا GPU اکسترنال به لبتاب Dell Vostro 3550 (2011) میخوره؟؟
CPU – Intel i5 – 2 core – 2430M (2.4Ghz)
BIOS – 2011
RAM – 16 Gb (2*8 DDR3)
Graphics – integrated RADEON 3000
و همینطور قیمت پایه ی یک GPU GTX-1060 6G رو تو سایت دیجیکالا زده ۵.۵ میلیون تومن. آیا همینقدره یا نه با کیس و پاور و ملزوماتش بیشتر از این حرفا آب میخوره؟
ممنون
سلام
لپ تاپتون باید پورت thunderbolt3 داشته باشه که حتی با اون هم باز پیشنهاد نمیشه چون لتنسی زیادی داره و همینطور پهنای باند خیلی کمتری نسبت به نمونه دسکتاپ یا کارت گرافیک داخلی ارائه میکنه.
اگر کیس داشته باشید خب فقط هزینه گرافیک رو میپردازید یا نهایتا یک پاور(اگه نداشته باشید) اگر کیس نداشته باشید قائدتا هزینه سی پی یو مادربرد هارد رم پاور هم اضافه میشه.
برای قیمت سعی کنید از لیون کامپیوتر استفاده کنید قیمت هاش نسبت به دی جی کالا به مراتب بهتره.
برای ۱۰۶۰ کارت از ۴ تومن هست تا ۶ تومن.
خیلی ممنون.
نه. thunderbolt 3 نداره. اوجه هنرش usb 3 هست.
برای دیپ لرنینگ text و nlp لبتاب های گیمینگ مثل Dell G7 , Alienware , Acer Predator , ROG Strix و غیره رو پیشنهاد نمیکنید؟
استوک ۲۰۱۹ این مدل ها رو میشه با ۱۰ ۱۲ تومن تهیه کرد.
کانفیگ خیلی قوی هم دارند مثلا Dell G7 هم مدل با کارت gtx 1060 داره هم rtx 2060 با cpu های نسل ۸ یا ۹ .
خواهش میکنم.
برای دیپ لرنینگ کلا لپ تاپ پیشنهاد نمیشه چون ۱٫ هزینه تمام شده اش نسبت به دسکتاپ بیشتره و ۲٫ بخاطر اینکه فرایند ترینیگ فرایند طولانی هست عموما و سیستم تهویه مناسبی در لپ تاپ ها وجود نداره
باعث ایجاد مشکل میشه مگر اینکه فرد واقعا حواسش باشه و کولینگ مناسب رو فراهم کنه.
بعیده با ۱۰ ۱۲ تومن لپ تاپ خیلی قوی ای ارائه بشه خصوصا بعد این افزایش قیمت اخیر. اما به هر حال
اگر بودجه ۱۰ ۱۲ تومن باشه میشه یه دسکتاپ مناسب تهیه کرد که به مراتب بهتر از لپ تاپ هست.
سلام.
از مطلب جامعی که نوشتید واقعا ممنون. علاوه بر مطلب تمام کامنتا رو هم خوندم و کلی اطلاعات به دست آوردم.
شما فرمودید که اصلا لپ تاپ رو برای کارهای دیپ پیشنهاد نمیدید.
اما با توجه به نیازی که دارم میخواهم یه لپ تاپ لمسی که بشه کارهای دیپ رو هم پشتبانی کنه خریداری کنم.
و حدود ۲۵ میلیون هم میخواهم هزینه کنه. برای لپ تاپ شما فرمودید که سیستم کولینگ قوی باید داشت. معیارتون از قوی بودن چیه؟ میشه یه مثالی بزنید. آیا منظورتون کولینگ اکسترناله؟
و این که به نظرتونSpectre x360 یا surface این ویژگی رو دارند؟
به نظر شما بهترین لپ تاپ ها در این رنج بودجه که برای دیپ هم مناسب باشه چیه؟
با تشکر
سلام اصلا طرف این لپ تاپها نرید چون اصلا مناسب یادگیری عمیق نیستند.
با این هزینه میتونید یه پی سی مناسب تهیه کنید .
اگر خیلی اصرار دارید که لپ تاپ تهیه بشه حتما از سری گیمینگ استفاده کنید که از کارتهای گرافیک قدرتمند بهره ببرند . چیزی کمتر از GTX1060 نگیرید و ترجیحا ترجیحا همه سعیتون این باشه از سری RTX کارت گرافیک بگیرید (یعنی لپ تاپتون یک کارت RTX2060 یا بالاتر داشته باشه حتما)
به هیچ وجه لپ تاپی که کارت گرافیکی مثل RTX 1650 یا امثالهم داره نگیرید که اصلا بدرد نمیخوره.
برای کولینگ هم لپ تاپهای گیمینگ معمولا طراحیشون مناسب هست چون برای گیم طراحی شدن اما خودتون یک کول پد مناسب حتما بگیرید .
چون بر خلاف بازی های کامپیوتری لود گرافیک شما عموما روی ۱۰۰ درصد فیکس میشه (مگه اینکه IO زیاد داشته باشید که بخار IO bound بودن مصرف جی پی یو بیاد پایین )
و فک کنید حداقل چند ساعت الی چند روز بصورت مداوم سیستم با این دمای زیاد کار باید بکنه اگه کولینگ مناسب نداشته باشید خیلی زود قطعاتتون مستهلک میشه و از بین میره و به مشکل میخورید
ترجیح اول پی سی
بعد اگر نشد لپ تاپ گیمینگ با گرافیک RTX2060 یا بالاتر (دیگه اگر پولی نبود نهایتا GTX1070 بگیرید دیگه اگه هیچی نبود اخرش GTX1060 بگیرید پایین تر نیایید) باز میگم ترجیح اول دوم سوم گرفتن کارت از سری RTX هست
رم هم حداقل ۱۶ گیگ باید باشه کف کف ۱۶ گیگ بالاتر بود چه بهتر اما کمتر نه .
خیلی ممنون از وقتی که گذاشتید و جواب دادید.
با خوندن نظر شما کلا نظرم عوض شد. قبلا دنبال یک لپ تاپ قدرتمند بودم. الان به فکر اینم که یک لپ تاپ معمولی بگیرم , اما در کنارش یک پی سی قوی ببندم.
تشکر بابت راهنمایی که انجام دادید.
با سلام من کامپیوترم قدیمی هستش گرافیکش بدون فن چند وقت کار کرد دیکه الان صفحه نمیاد الان بردم پیسه تعمیر کار میگه این گرافیک قدیمیه توبازار پیدا نمیشه میخوام بپرسم گرافیکش رو از کجا پیدا کنم نوعش گرونه واقعا
سلام. متوجه فرمایش شما نشدم.
چه گرافیکی؟ اسم و مدلش چیه بفرمایید تا ببینیم اصلا مناسب یادیگری عمیق هست یا خیر
سلام و روز بخیر در این مقالتون به کارت های گرافیک سری Quadro اشاره ای نکردید برای مثال Rtx 6000 یک کارت فوق العاده قدرتمند در تمام مواردی هست که فرمودید و اگر Gpuو پهنای باند و حافظه نیاز باشه این کارت ها دارند .
علتی داره که توصیه نشده ؟
سلام
این کارتها مختص کارهای سه بعدی طراحی شدند و علاوه بر اینکه هزینه سرسام آوری دارند(بالای ۴ ۵ هزار دلار) تو حوزه یادگیری عمیق برگ برنده ای نسبت به سایر کارتها ندارن اون دستورالعملهایی که ازش پشتیبانی میکنن در حوزه ما کارایی نداره
برای همین پیشنهاد نمیشن.
با هزینه ای که این کارت تحمیل میکنه میشه براحتی چندین کارت سری ۲۰۸۰TI رو خریداری کرد که هزینه کرد بسیار بسیار بهتری بحساب میاد( هر ۲۰۸۰TI تقریبا ۴۴۰۰ کور داره و هر کوادرو ۶۰۰۰ ۴۶۰۰ . هر دو هم از DDR6 استفاده میکنن و پهنای باند یکسانی دارن و در بقیه موارد مشابه مربوط به کار ما هم تقریبا میشه گفت یکی هستن با این تفاوت که قیمت یک ۲۰۸۰TI یک چهارم الی یک پنجم rtx6000 هست. اون بحث حافظه هم خوبه که ۲۴ گیگه اما اگه سویچ کنید به fp16 یا برید سمت کوانتیزیشن int8 دیگه مساله ای نیست. اگر همون بودجه مالی رو در نظر داشته باشید با چندتا ۲۰۸۰TI براحتی میتونید بسیار بیشتر از اون میزان حافظه موثر رو داشته باشید.
پس اگر بخواهییم بگیم چرا دلیل اصلی صرفه اقتصادی نداشتن برای کار ماست. با اون هزینه کرد براحتی میشه سلوشن بسیار بهتری رو با کارتهایی مثل ۲۰۸۰TI تهیه کرد.
سلام
بین دو تا سیستم با مشخصه گرافیک و سی پی یو زیر برای یادگیری ماشین کدومو پیسنهاد میدین؟
CPU: i7 9750H با Gpu:1660ti(6G)
و
Cpu:AMD Ryzen7 3750H با Gpu: RTX2060(6G)
سلام
گزینه دوم
Rtx2060
. کارت ۱۶۶۰ti از تنسورکور پشتیبانی نمیکنه و از ۱۰۷۰ ضعیف تره. از سری جدید سعی کنید همون ۲۰۶۰ ۲۰۷۰ و امثالهم رو تهیه کنید.
یا از نسل قبل کارتهایی مثل ۱۰۷۰ ۱۰۸۰ بگیرید (با توجه به قیمت ۱۶۶۰ti و قیمت کارتهایی که عرض کردم )
سلام وقتتون بخیر
من قصد دارم یک pc تهیه کنم برای کار در زمینه deep learning شاخه face تا ۱۵ میلیون تومان هم می تونم هزینه کنم. شما چه سیستمی پیشنهاد می دهید ؟ متشکر از راهنمایی شما.
سلام
توضیحات بالا رو مطالعه کنید مشخصه
بسته به بودجه اتون اول گرافیک رو مشخص کنید بعد بقیه بخشهای سیستمتون رو
سلام بر سید عزیز.
این سایت هم قیمتهاش خوبه :
Fafait.net
ارادتمند.
یاعلی(ع)
سلام
لپ تاپ S533JQ-A با پردازنده core i7 نسل ده و گرافیکnvidia Geforce mx 350 میتونه جوابگو پایان نامه ارشد باشه؟
شبکه های عصبی LSTM و بازگشتی ها را میشه اجرا گرفت؟
سلام
لپ تاپ legion 5 – HE برای دیپ لرنینگ خوبه؟
cpu: i5- 10300H
ram: 32 DDR4
hard: 1T+256ssd
gpu: rtx 2060 – 6g
سلام. بله میتونید استفاده کنید ولی حتما برای کولینگ لپ تاپ هم فکر کنید (دور فن رو افزایش بدید موقع ترینینگ و از کول پد استفاده کنید همیشه تا دما رو خنک نگه دارید)
سلام. برای کار دیپ لرنینگ آیا کارت گرافیک gtx 1660 است ؟
سلام.
کارت بدی نیست اما بشدت پیشنهاد میکنم سعی کنید rtx2060 حداقل بگیرید اگه بودجه محدوده.
کلا اندازه حافظه کمه (۶ گیگ) و تو ترین مدلهای جدید اذیت میشید اگه بتونید کارت دسته دوم با قیمت مناسب بگیرید خیلی بهتره (البته مطمئن باشید که ماین نشده باشه)
برای کار دیپ لرنینگ روی تصاویر پزشکی کارت گرافیک gtx1660 مناسب است؟
سلام وقت شما بخیر.
به نظر شما
core i5 11 با گرافیک rtx 2060 6G بهتره؟
یا ryzen 7 5800H با گرافیک rtx3050 4G
سلام.
سری rtx3xxx (یعنی سری ۳۰۰۰ مثل ۳۰۵۰ ۳۰۶۰ ۳۰۷۰ و الخ) نسبت به نسل قبل یعنی سری rtx2xxx(مثل ۲۰۶۰ ۲۰۷۰ و… ) بهبود های خیلی خوبی داشتن. خصوصا در زمینه کارایی تنسورکورها
سری rtx3050 هنوز وارد بازار نشده تا جایی که من میدونم و اطلاعات زیادی ازش در دسترس نیست (باز اگه rtx3050ti بود بهتر بود) ولی با توجه به اطلاعات اولیه ای که ازش هست این کارت در کل نسبت به ۲۰۶۰ ضعیف تره.(در حدود ۲۰الی۳۰ درصد)
برای همین با توجه به اینکه ۲۰۶۰ حافظه بیشتری داره و پرفورمنس اون در fp16 بیشتر از rtx3050 هست (حدود ۳۰درصد) پس ۲۰۶۰ انتخاب بهتریه.
البته اگر باز جا داره که لپ تاپی بگیرید که کارت قویتری داشته باشه خیلی بهتره خصوصاحداقل rtx3060 یا rtx2070 (اینجا rtx3060 گزینه بهتری نسبت به rtx2070 هست)
سلام
میشه یه لیست جدید از کارت های توی بازار بدید که کدوم خبه از ۲۰ میلیون تا ۵۰ میلیون
سلام
به ترتیب بودجه ۳۰۹۰ بعد ۳۰۸۰TI بعد ۳۰۸۰ بعد ۳۰۷۰TI و بعد ۳۰۷۰ و نهایتا ۳۰۶۰ti (برخلاف بقیه نسخه ti که ۳۰ درصد قویتر از نسخه معمولی هست ۸ گیگ بیشتر حافظه نداره (معمولی ۱۲ گیگ داره) اگه زمان ترینینگ در مقابل مدلها با بچ های بزرگتر براتون اولویت داره نسخه ti رو بگیرید (میتونید با mixed precision حافظه مصرفی رو تقریبا نصف کنید و سرعت پردازش هم بالاتره نسبت به نسخه معمولی))
دقت کنید که ۳۰۸۰ الان دو مدل در بازار هست نسخه ۱۰ گیگابایتی و نسخه ۱۲ گیگابایت (LHR یا همون limited hash rate ) اگر بنای ماین کردن ندارید نسخه ۱۲ گیگابایتی بهتره و تو ترین مدلها دستتون رو بازتر میزاره و خیلی خوبه (کمی قویتر هم هست)
سلام
ممنون از وقتی که میزارید و سوالات رو پاسخ میدید.
من هم یه سوال داشتم ممنون میشم اگر پاسخ بدین.
من با پکیجهای محاسباتی سنگین کار میکنم. حداقل رم مصرفی ۱۶ گیگ ویا ۳۲ گیگه. ترکیب CPU , GPU برای محاسبات هم خیلی واسم مهمه. معمولا از TensorFlow,JAX,Pytorch استفاده میکنم.
دوتا گزینه برای تهیه سیستم مورد نیازم دارم.
۱. Laptop
Intel Core i7 12650H Processor (10 Cores, 24MB Cache, up to 4.70GHz, 64-bit)
۱۵٫۶″ (۳۹٫۶cm) FULL HD (1920×1080) 16:9 IPS screen / Anti-glare / 250nits / 144Hz / Contrast 1000:1
RAM Memory: 16GB [2x8GB] DDR5 4800MHz (Expandable up to 32GB, 2 Slots)
Storage: 512GB M.2 NVMe PCIe 3.0 SSD
Dedicated graphics card: Nvidia GeForce RTX 3060 6GB GDDR6
Integrated graphics card: Intel Iris Xe Graphics
HD Webcam: Yes
Audio: 2 x Speakers / Microphone / Dolby Atmos
Keyboard: Chiclet type / Backlit / Numeric keyboard / Spanish
TouchPad: Multi-touch
Battery: 76Wh, 4Cells, Ion-Lithium
۲٫ PC
Processor: Intel Core i7-11700 4.9GHz Socket 1200
Motherboard: Gigabyte B560M D3H Socket 1200
RAM memory: 16GB DDR4 3200Mhz *Kingston or Corsair, depending on availability
Graphics: Nvidia GeForce RTX 3050 8GB *Asus / Gigabyte / MSI, depending on availability
Storage: Gigabyte 500GB NVME M.2 SSD *Final mark may vary based on availability
Optical drive: None
Case: Nox HUMMER FROST ARGB
Source: NZXT C750 750W 80+ Bronze
Cooling: Integrated
Network: Ethernet 10/100/1000Mbps
به نظر شما کدون انتخاب بهتری هست؟ با احتساب داشتن یه کولپد خوب برای لپتاپ.
ممنون
سلام
ماهیت کار شما برای من مشخص نیست بنابر این هردو گزینه میتونه مناسب باشه اما دقت کنید
برای ترین های طولانی مدت لپ تاپ اصلا گزینه مناسبی نیست و برای گرما معمولا همیشه به مشکل میخورید.
برای ترین های طولانی مدت حتما پی سی تهیه کنید. برای پی سی همیشه دستتون بازه که یک قطعه ای رو بعدا تعویض کنیدو قویترش رو بگیرید و… لپ تاپ دستتون بسته است. مهمتر از اون کولینگ هست که در پی سی خیلی راحت تر و بهتر انجام میشه نستب به لپ تاپ.
اگه هنوز تهیه نکردید حتما سعی کنید از نسل ۱۲ اینتل تهیه کنید پرفورمنس خیلی بهتری میگیرید و هزینه تمام شده هم یکیه معمولا. موقع تهیه رم هم حتما باس ۳۲۰۰ به بالا باشه ترجیحا (برند بهتر از کینگستون انتخاب کنید بنظرم بهتره مثل ژل کورسر جی اسکیل و امثالهم)
مادربرد هم بهتره چیپستش از سری z باشه تا B. (برای نسل دوازده میشه z690 ترجیح خودم مادربرد ایسوز هست (یا سری پرایم یا راگ استریکس اگه بودجه دارید بزارید رو گرافیک)
گرافیک ۳۰۵۰ برای بازی خوبه اما برای ترین ترجیحا سعی کنید اگه پولتون میرسه ۳۰۸۰ بگیرید ۱۲ گیگ اگر نشد ۱۰ گیگ و به این ترتیب گام به گام ببینید کدوم رو میتونید تهیه کنید. برندهای معتبر ایسوز گیگابایت ام اس آی و زوتاک هستن (خود من سری OC گیگابایت رو همیشه خریدم چون قیمتش و کاراییش خوبه. سراغ کارتهایی مثل پالیت و… نرید)
اگر نسل دوازده گرفتید حتما یک واترکولر تهیه کنید خود من lian li galahad 360 رو خریدم (۱۲۷۰۰k ) سی پی یو های پایین تر گرمای کمتری تولید میکنند اما اگر ۱۲۷۰۰k خواستید بگیرید یا بالاتر از اون حتما یک واترکولر مناسب تهیه کنید.
برای nvme برند سامسونگ سری evo رو پیشنهاد میکنم.
کیس هم حتما یک کیس جادار بگیرید که تهویه مناسبی داشته باشه (هم intake و هم خروجی هوا مناسب باشه کیس coolermaster h500p argb کیس خوبیه اما اگه گرونه نسخه های ارزوتر از برندهای داخلی مثل گرین هم میتونید پیدا کنید.
پاور هم حداقل ۷۵۰ وات واقعی باشه (ببینید اگه میتونید ایسوز بگیرید وگرنه گرین هم میتونه خوب باشه – اگه برند میخوایید بگیرید حتما ریویوها رو تو سایتهای خارجی دنبال کنید صرف اینکه مثلا کولر مستر زده یا ایکس یا …. دلیل بر خوب بودن کولر نیست. گارانتی رو ببینید و کیفیتش رو )
نظر شخصی اگر من باشم پی سی رو انتخاب میکنم.