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Underlying scene

Observation




1. How should the scene be represented?

2. How should the representation be computed?
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Introduction

Deep Supervised Learning

e Optimize directly for the end loss

e End-to-end training, no engineered inputs

e With enough data, learn a big non-linear function

e Supervised labeling is often enough for transferrable representations

e Large labeled dataset + big / deep neural network + GPUs
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Introduction

Deep Supervised Learning

Text Classification Video Classification

Spatial stream ConvNet
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optical flow

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

Zhang et al. (2015) Simonyan et al. (2014)



Introduction

Deep Supervised Learning

e [nnovation continues
o Inception (Szegedy et al., 2015)
o Residual connections (He et al., 2015)
o Batchnorm (loffe et al., 2015)

e Performance is continuously improving
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Szegedy et al., (2015)



Where does the data come from?

What is the correct representation?
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Learning Learning



Human-level control in ATARI

End-to-end reinforcement learning

OBSERVATIONS

‘Convolution Convolution Fully connected Fully cgnmecte

a

<

SN ". -
N
TIEEEEER ale]efele]s]-E
© & & &) (& &) [e] (& g

%

Mnih et al. (2015)


http://www.youtube.com/watch?v=Iw4tTDGUlIY

How much experience do we really need?
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Supervised Reinforcement
Learning Learning
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Learning paradigms
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Highly structured

Input Image Intermediate Iterations Final Inferred Image
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General Purpose Graphics Programming

Vikash Mansinghka, Tejas D. Kulkarni, Yura N. Perov, and Joshua B. Tenenbaum (2013)



Partially structured

A Stochastic Grammar of Images
Song-Chun Zhu and David Mumford (2007)
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Partially structured
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S. M. Ali Eslami and Christopher K. I. Williams (2012)



Fully unstructured

features data
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Geoffrey Hinton (2006) Antti Rasmus et al. (2016) Jeff Donahue et al. (2016)



Attend, Infer, Repeat: Fast Scene
Understanding with Generative Models

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, Geoffrey Hinton
Neural Information Processing Systems (NIPS), 2016



Motivation

To obtain object-based representations
To learn from orders-of-magnitude less data
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Model Cause

Image

blue brick

pile of bricks
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Demo reel



http://www.youtube.com/watch?v=EKsgjR4Txk4
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Representational power

Accuracy (%)
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Additional structure

distributed vector
that correlates
with blue brick
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Additional structure

class=brick

distributed vector colour=blue
that correlates position=P
with blue brick rotation=R
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Additional structure

paloads
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Unsupervised Learning of
3D Structure from Images

Danilo Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, Nicolas Heess
Neural Information Processing Systems (NIPS), 2016



Motivation

To recover 3D structure from 2D images
To form stable representations, regardless of camera position



Motivation

To recover 3D structure from 2D images
To form stable representations, regardless of camera position

e Inherently ill-posed

o All objects appear under self occlusion, infinite explanations
o Therefore build statistical models to know what's likely and what's not

e Even with models, inference is intractable
o Important to capture multi-modal explanations

e How are 3D scenes best represented? $ @ @

o Meshes or voxels? 2D input 3D interpretation

e Where is training data collected from?



Unsupervised Learning of 3D Structure from Images



Unsupervised Learning of 3D Structure from Images
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Unsupervised Learning of 3D Structure from Images

Projection operators
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Unsupervised Learning of 3D Structure from Images

Unconditional samples




Unsupervised Learning of 3D Structure from Images

Class-conditional samples



http://www.youtube.com/watch?v=bT_i5NGxuL0

Unsupervised Learning of 3D Structure from Images

Class-conditional samples
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Unsupervised Learning of 3D Structure from Images

Multi-modality of inference
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Unsupervised Learning of 3D Structure from Images

3D structure from multiple 2D images
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Unsupervised Learning of 3D Structure from Images

Inferring object meshes




Unsupervised Learning of 3D Structure from Images

Inferring object meshes



http://www.youtube.com/watch?v=OW_cOyoE3oA
http://www.youtube.com/watch?v=sq8sf1Nfg2A
http://www.youtube.com/watch?v=RXVMvAdv4Wo

Recap

e Deep Supervised Learning

e Deep Reinforcement Learning
e Model-based Methods

e Structured / Unstructured Generative Models
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