## **Intelligent Perception**

S. M. Ali Eslami

December 2016











?

- 1. How should the scene be represented?
- 2. How should the representation be computed?



?

# Learning paradigms



Supervised Learning





Introduction

# **Deep Supervised Learning**

- Optimize directly for the end loss
- End-to-end training, no engineered inputs
- With enough data, learn a big non-linear function
- Supervised labeling is often enough for transferrable representations
- Large labeled dataset + big / deep neural network + GPUs



# Introduction Deep Supervised Learning

Text Classification

#### **Video Classification**





Zhang et al. (2015)

Simonyan et al. (2014)

#### Introduction

# **Deep Supervised Learning**

- Innovation continues
  - Inception (Szegedy et al., 2015)
  - Residual connections (He et al., 2015)
  - Batchnorm (loffe et al., 2015)
- Performance is continuously improving



Szegedy et al., (2015)

#### Where does the data come from?

#### What is the correct representation?

# **Learning paradigms**



Supervised Learning Reinforcement Learning

#### Human-level control in ATARI

#### **End-to-end reinforcement learning**



Mnih et al. (2015)

#### How much experience do we really need?

# **Learning paradigms**



# **Learning paradigms**



# **Highly structured**



General Purpose Graphics Programming

Vikash Mansinghka, Tejas D. Kulkarni, Yura N. Perov, and Joshua B. Tenenbaum (2013)

# **Partially structured**

A Stochastic Grammar of Images Song-Chun Zhu and David Mumford (2007)





#### **Partially structured**



S. M. Ali Eslami and Christopher K. I. Williams (2012)

### **Fully unstructured**





Geoffrey Hinton (2006)

Antti Rasmus et al. (2016)

Jeff Donahue et al. (2016)

### Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, Geoffrey Hinton Neural Information Processing Systems (NIPS), 2016

#### **Motivation**

#### To obtain **object-based** representations

#### To learn from orders-of-magnitude less data



# Image

Model









blue brick

pile of bricks - not sufficient for grasping counting transfer generalisation



Х









у

Х









# Inference Network















Decoder

у





#### **Demo reel**

Scanning policy is left-to-right







# Omniglot



#### **Representational power**



### **Additional structure**

distributed **vector** that correlates with blue brick





## **Additional structure**

distributed **vector** that correlates with blue brick





class=**brick** colour=**blue** position=**P** rotation=**R** 









#### **Additional structure**







# (b) Reconstruction

(a) Data



## **Policy learning**



#### **Unsupervised Learning of 3D Structure from Images**

Danilo Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, Nicolas Heess Neural Information Processing Systems (NIPS), 2016

#### **Motivation**

#### To recover **3D structure** from **2D images**

To form **stable** representations, regardless of camera position

## **Motivation**

#### To recover **3D structure** from **2D images**

To form **stable** representations, regardless of camera position

- Inherently ill-posed
  - All objects appear under self occlusion, infinite explanations
  - Therefore build statistical models to know what's likely and what's not
- Even with models, inference is intractable
  - Important to capture multi-modal explanations
- How are 3D scenes best represented?
  - Meshes or voxels?
- Where is training data collected from?





2D input

**3D** interpretation

#### **Unsupervised Learning of 3D Structure from Images**



#### **Unsupervised Learning of 3D Structure from Images**



#### Unsupervised Learning of 3D Structure from Images **Projection operators**



# Unsupervised Learning of 3D Structure from Images Unconditional samples



# Unsupervised Learning of 3D Structure from Images **Class-conditional samples**



#### Unsupervised Learning of 3D Structure from Images Class-conditional samples



#### Unsupervised Learning of 3D Structure from Images Multi-modality of inference



#### Unsupervised Learning of 3D Structure from Images **3D structure from multiple 2D images**



Unsupervised Learning of 3D Structure from Images Inferring object meshes



#### Unsupervised Learning of 3D Structure from Images Inferring object meshes





#### Recap

- Deep Supervised Learning
- Deep Reinforcement Learning
- Model-based Methods
- Structured / Unstructured Generative Models

#### aeslami@google.com arkitus.com