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Deep learning algorithms are a subset of the machine learning algorithms, which aim at discovering
multiple levels of distributed representations. Recently, numerous deep learning algorithms have been
proposed to solve traditional artificial intelligence problems. This work aims to review the state-of-the-
art in deep learning algorithms in computer vision by highlighting the contributions and challenges from
over 210 recent research papers. It first gives an overview of various deep learning approaches and their
recent developments, and then briefly describes their applications in diverse vision tasks, such as image
classification, object detection, image retrieval, semantic segmentation and human pose estimation.
Finally, the paper summarizes the future trends and challenges in designing and training deep neural
networks.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Deep learning is a subfield of machine learning which attempts
to learn high-level abstractions in data by utilizing hierarchical
architectures. It is an emerging approach and has been widely
applied in traditional artificial intelligence domains, such as
semantic parsing [1], transfer learning [2,3], natural language
processing [4], computer vision [5,6] and many more. There are
mainly three important reasons for the booming of deep learning
today: the dramatically increased chip processing abilities (e.g.
GPU units), the significantly lowered cost of computing hardware,
and the considerable advances in the machine learning algorithms
[9].

Various deep learning approaches have been extensively
reviewed and discussed in recent years [8–12]. Among those
Schmidhuber et al. [10] emphasized the important inspirations
and technical contributions in a historical timeline format, while
Bengio [11] examined the challenges of deep learning research and
proposed a few forward-looking research directions. Deep net-
works have been shown to be successful for computer vision tasks
because they can extract appropriate features while jointly per-
forming discrimination [9,13]. In recent ImageNet Large Scale
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Visual Recognition Challenge (ILSVRC) competitions [189], deep
learning methods have been widely adopted by different
researchers and achieved top accuracy scores [7].

This survey is intended to be useful to general neural com-
puting, computer vision and multimedia researchers who are
interested in the state-of-the-art in deep learning in computer
vision. It provides an overview of various deep learning algorithms
and their applications, especially those that can be applied in the
computer vision domain.

The remainder of this paper is organized as follows:
In Section 2, we divide the deep learning algorithms into four

categories: Convolutional Neural Networks, Restricted Boltzmann
Machines, Autoencoder and Sparse Coding. Some well-known
models in these categories as well as their developments are lis-
ted. We also describe the contributions and limitations for these
models in this section. In Section 3, we describe the achievements
of deep learning schemes in various computer vision applications,
i.e. image classification, object detection, image retrieval, semantic
segmentation and human pose estimation. The results on these
applications are shown and compared in the pipeline of their
commonly used datasets. In Section 4, along with the success deep
learning methods have achieved, we also face several challenges
when designing and training the deep networks. In this section,
we summarize some major challenges for deep learning, together
with the inherent trends that might be developed in the future. In
Section 5, we conclude the paper.
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/
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2. Methods and recent developments

In recent years, deep learning has been extensively studied in
the field of computer vision and as a consequence, a large number
of related approaches have emerged. Generally, these methods can
be divided into four categories according to the basic method they
are derived from: Convolutional Neural Networks (CNNs),
Restricted Boltzmann Machines (RBMs), Autoencoder and Sparse
Coding.

The categorization of deep learning methods along with some
representative works is shown in Fig. 1.

In the next four parts, we will briefly review each of these deep
learning methods and their most recent developments.

2.1. Convolutional Neural Networks (CNNs)

The Convolutional Neural Networks (CNN) is one of the most
notable deep learning approaches where multiple layers are
trained in a robust manner [17]. It has been found highly effective
and is also the most commonly used in diverse computer vision
applications.

The pipeline of the general CNN architecture is shown in Fig. 2.
Generally, a CNN consists of three main neural layers, which are

convolutional layers, pooling layers, and fully connected layers.
Different kinds of layers play different roles. In Fig. 2, a general
CNN architecture for image classification [6] is shown layer-by-
layer. There are two stages for training the network: a forward
stage and a backward stage. First, the main goal of the forward
stage is to represent the input image with the current parameters
(weights and bias) in each layer. Then the prediction output is
used to compute the loss cost with the ground truth labels. Sec-
ond, based on the loss cost, the backward stage computes the
gradients of each parameter with chain rules. All the parameters
are updated based on the gradients, and are prepared for the next
forward computation. After sufficient iterations of the forward and
backward stages, the network learning can be stopped.

Next, we will first introduce the functions along with the recent
developments of each layer, and then summarize the commonly
used training strategies of the networks. Finally, we present sev-
eral well-known CNN models, derived models, and conclude with
the current tendency for using these models in real applications.

2.1.1. Types of layers
Generally, a CNN is a hierarchical neural network whose con-

volutional layers alternate with pooling layers, followed by some
Deep learning methods

CNN-based Methods

RBM-based Methods

Autoencoder-based Methods

Sparse Coding-based Methods

Deep Belief Networks[49]

Deep Boltzmann Machines[65]

Deep Energy Models[73]

Sparse Autoencoder[50]

Denoising Autoencoder[85]

Contractive Autoencoder[87]

Sparse Coding SPM[98]

Laplacian Sparse Coding[113]

Local Coordinate Coding[95] 

Super-Vector Coding[118]

AlexNet[6]

Clarifai[52]

VGG[31]
GoogLeNet[20]

SPP[26]

Fig. 1. A categorization of the deep learning methods and their
representative works.
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fully connected layers (see Fig. 2). In this section, we will present
the function of the three layers and briefly review the recent
advances that have appeared in research on those layers.

2.1.1.1. Convolutional layers. In the convolutional layers, a CNN
utilizes various kernels to convolve the whole image as well as the
intermediate feature maps, generating various feature maps, as
shown in Fig. 3.

There are three main advantages of the convolution operation
[19]: 1) the weight sharing mechanism in the same feature map
reduces the number of parameters 2) local connectivity learns
correlations among neighboring pixels 3) invariance to the loca-
tion of the object.

Due to the benefits introduced by the convolution operation,
some well-known research papers use it as a replacement for the
fully connected layers to accelerate the learning process [20,173].
One interesting approach of handling the convolutional layers is
the Network in Network (NIN) [21] method, where the main idea
is to substitute the conventional convolutional layer with a small
multilayer perceptron consisting of multiple fully connected layers
with nonlinear activation functions, thereby replacing the linear
filters with nonlinear neural networks. This method achieves good
results in image classification.

2.1.1.2. Pooling layers. Generally, a pooling layer follows a con-
volutional layer, and can be used to reduce the dimensions of
feature maps and network parameters. Similar to convolutional
layers, pooling layers are also translation invariant, because their
computations take neighboring pixels into account. Average
pooling and max pooling are the most commonly used strategies.
Fig. 4 gives an example for a max pooling process. For 8�8 feature
maps, the output maps reduce to 4�4 dimensions, with a max
pooling operator which has size 2�2 and stride 2.

For max pooling and average pooling, Boureau et al. [22] pro-
vided a detailed theoretical analysis of their performances. Scherer
et al. [23] further conducted a comparison between the two
pooling operations and found that max-pooling can lead to faster
convergence, select superior invariant features and improve gen-
eralization. In recent years, various fast GPU implementations of
CNN variants were presented, most of them utilize max-pooling
strategy [6,24].

The pooling layers are the most extensively studied among the
three layers. There are three well-known approaches related to the
pooling layers, each having different purposes.

� Stochastic pooling
A drawback of max pooling is that it is sensitive to overfit the
training set, making it hard to generalize well to test samples
[19]. Aiming to solve this problem, Zeiler et al. [25] proposed a
stochastic pooling approach which replaces the conventional
deterministic pooling operations with a stochastic procedure,
by randomly picking the activation within each pooling region
according to a multinomial distribution. It is equivalent to
standard max pooling but with many copies of the input image,
each having small local deformations. This stochastic nature is
helpful to prevent the overfitting problem.

� Spatial pyramid pooling (SPP)
Normally, the CNN-based methods require a fixed-size input
image. This restriction may reduce the recognition accuracy for
images of an arbitrary size. To eliminate this limitation, He et al.
[26] utilized the general CNN architecture but replaced the last
pooling layer with a spatial pyramid pooling layer. The spatial
pyramid pooling can extract fixed-length representations from
arbitrary images (or regions), generating a flexible solution for
handling different scales, sizes, aspect ratios, and can be applied
in any CNN structure to boost the performance of this structure.
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/
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� Def-pooling

Handling deformation is a fundamental challenge in computer
vision, especially for the object recognition task. Max pooling and
average pooling are useful in handling deformation but they are
not able to learn the deformation constraint and geometric model
of object parts. To deal with deformation more efficiently, Ouyang
et al. [27] introduced a new deformation constrained pooling layer,
called def-pooling layer, to enrich the deep model by learning the
deformation of visual patterns. It can substitute the traditional
max-pooling layer at any information abstraction level.

Because of the different purposes and procedures the pooling
strategies are designed for, various pooling strategies could be
combined to boost the performance of a CNN.

2.1.1.3. Fully-connected layers. Following the last pooling layer in
the network as seen in Fig. 2, there are several fully-connected
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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layers converting the 2D feature maps into a 1D feature vector, for
further feature representation, as seen in Fig. 5.

Fully-connected layers perform like a traditional neural net-
work and contain about 90% of the parameters in a CNN. It enables
us to feed forward the neural network into a vector with a pre-
defined length. We could either feed forward the vector into cer-
tain number categories for image classification [6] or take it as a
feature vector for follow-up processing [29].

Changing the structure of the fully-connected layer is uncom-
mon, however an example came in the transferred learning
approach [30], which preserved the parameters learned by Ima-
geNet [6], but replaced the last fully-connected layer with two
new fully-connected layers to adapt to the new visual
recognition tasks.

The drawback of these layers is that they contain many para-
meters, which results in a large computational effort for training
them. Therefore, a promising and commonly applied direction is to
remove these layers or decrease the connections with a certain
method. For example, GoogLeNet [20] designed a deep and wide
network while keeping the computational budget constant, by
switching from fully connected to sparsely connected
architectures.

2.1.2. Training strategy
Compared to shallow learning, the advantage of deep learning

is that it can build deep architectures to learn more abstract
information. However, the large amount of parameters introduced
may also lead to another problem: overfitting. Recently, numerous
regularization methods have emerged in defense of overfitting,
including the stochastic pooling mentioned above. In this section,
we will introduce several other regularization techniques that may
influence the training performance.

2.1.2.1. Dropout and DropConnect. Dropout was proposed by Hin-
ton et al. [38] and explained in-depth by Baldi et al. [39]. During
each training case, the algorithm will randomly omit half of the
feature detectors in order to prevent complex co-adaptations on
the training data and enhance the generalization ability. This
method was further improved in [40–45]. Specifically, research by
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/



No-Drop Network Dropout Network DropConnect Network

W

f

R=f(WV)
W

f

R=m*f(WV)

m
1

1

0

M*W

f

R=f((M*W)V)

Fig. 6. A comparison of No-Drop, Dropout and DropConnect networks [46] (a) No-Drop Network, (b) Dropout Network and (c) DropConnect network.

Y. Guo et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
Warde-Farley et al. [45] analyzed the efficacy of dropouts and
suggested that dropout is an extremely effective ensemble learn-
ing method.

One well-known generalization derived from Dropout is called
DropConnect [46], which randomly drops weights rather than the
activations. Experiments showed that it can achieve competitive
or even better results on a variety of standard benchmarks,
although slightly slower. Fig. 6 gives a comparison of No-Drop,
Dropout and DropConnect networks [46].

2.1.2.2. Data augmentation. When a CNN is applied to visual object
recognition, data augmentation is often utilized to generate
additional data without introducing extra labeling costs. The well-
known AlexNet [6] employed two distinct forms of data aug-
mentation: the first form of data augmentation consists of gen-
erating image translations and horizontal reflections, and the
second form consists of altering the intensities of the RGB chan-
nels in training images. Howard et al. [47] took AlexNet as the base
model and added additional transformations that improved the
translation invariance and color invariance by extending image
crops with extra pixels and adding additional color manipulations.
This data augmentation method was widely utilized by some of
the more recent studies [20,26]. Dosovitskiy et al. [48] proposed an
unsupervised feature learning approach based on data augmen-
tation: it first randomly sampled a set of image patches and
declares each of them as a surrogate class, then extended these
classes by applying transformations corresponding to translation,
scale, color and contrast. Finally, it trained a CNN to discriminate
between these surrogate classes. The features learnt by the net-
work showed good results on a variety of classification tasks. Aside
from the classical methods such as scaling, rotating and cropping,
Wu et al. [159] further adopted color casting, vignetting and lens
distortion techniques, which produced more training examples
with broad coverage.

2.1.2.3. Pre-training and fine-tuning. Pre-training means to initi-
alize the networks with pre-trained parameters rather than ran-
domly set parameters. It is quite popular in models based on CNNs,
due to the advantages that it can accelerate the learning process as
well as improve the generalization ability. Erhan et al. [16] has
conducted extensive simulations on the existing algorithms to find
why pre-trained networks work better than networks trained in a
traditional way. As AlexNet [6] achieved excellent performance
and is released to the public, numerous approaches choose Alex-
Net trained on ImageNet2012 as their baseline deep model
[26,29,30], and use fine-tuning of the parameters according to
their specific tasks. Nevertheless, there are approaches [18,27,146]
that deliver better performance by training on other models, e.g.
Clarifai [52], GoogLeNet [20], and VGG [31].

Fine-tuning is a crucial stage for refining models to adapt to
specific tasks and datasets. In general, fine-tuning requires class
labels for the new training dataset, which are used for computing
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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the loss functions. In this case, all layers of the new model will be
initialized based on the pre-trained model, such as AlexNet [6],
except for the last output layer that depends on the number of
class labels of the new dataset and will therefore be randomly
initialized. However, in some occasions, it is very difficult to obtain
the class labels for any new dataset. To address this problem, a
similarity learning objective function was proposed to be used as
the loss functions without class labels [166], so the back-
propagation can work normally and allow the model to be
refined layer by layer. There are also many research results
describing how to transfer the pre-trained model efficiently. A new
way is defined to quantify the degree to which a particular layer is
general or specific [167], namely how well features at that layer
transfers from one task to another. They concluded that initializing
a network with transferred features from almost any number of
layers can give a boost to generalization performance after fine-
tuning to a new dataset.

In addition to the regularization methods described above,
there are also other common methods such as weight decay,
weight tying and many more [10]. Weight decay works by adding
an extra term to the cost function to penalize the parameters,
preventing them from exactly modeling the training data and
therefore helping to generalize to new examples [6]. Weight tying
allows models to learn good representations of the input data by
reducing the number of parameters in Convolutional Neural Net-
works [160].

Another interesting thing to note is that these regularization
techniques for training are not mutually exclusive and they can be
combined to boost the performance.

2.1.3. CNN architecture
With the recent developments of CNN schemes in the com-

puter vision domain, some well-known CNN models have
emerged. In this section, we first describe the commonly used CNN
models, and then summarize their characteristics in their
applications.

The configurations and the primary contributions of several
typical CNN models are listed in Table 1.

AlexNet [6] is a significant CNN architecture, which consists of
five convolutional layers and three fully connected layers. After
inputting one fixed-size (224�224) image, the network would
repeatedly convolve and pool the activations, then forward the
results into the fully-connected layers. The network was trained on
ImageNet and integrated various regularization techniques, such
as data augmentation, dropout, etc. AlexNet won the ILSVRC2012
competition [189], and set the tone for the surge of interest in
deep convolutional neural network architectures. Nevertheless,
there are two major drawbacks of this model: 1) it requires a fixed
resolution of the image; 2) there is no clear understanding of why
it performs so well.

In 2013, Zeiler et al. [52] introduced a novel visualization techni-
que to give insight into the inner workings of the intermediate feature
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/



Table 1
CNN models and their achievements in ILSVRC classification competitions.

Method Year Place Configuration Contribution

AlexNet [6] 2012 1st Five convolutional layersþthree fully connected layers An important CNN architecture which set the tone for many computer vision
researchers

Clarifai [52] 2013 1st Five convolutional layersþthree fully connected layers Insight into the function of intermediate feature layers
SPP [26] 2014 3rd Five convolutional layersþthree fully connected layers Proposed the “spatial pyramid pooling” to remove the requirement of image

resolution
VGG [31] 2014 2nd Thirteen/fifteen convolutional layersþthree fully con-

nected layers
A thorough evaluation of networks of increasing depth

GoogLeNet [20] 2014 1st Twenty-one convolutional layersþone fully connected
layer

Increased the depth and width without raising the computational
requirements

Basic Models Derived Models

AlexNet[6]

Clarifai[52]

SPP-net[26]

VGG[31]

GoogLeNet[20]

Image Classification

RCNN[29]

FCN[147]

Object Detection

Semantic Segmentation

Fig. 7. CNN basic models and derived models.
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layers. These visualizations enabled them to find architectures that
outperform AlexNet [6] on the ImageNet classification benchmark,
and the resulting model, Clarifai, received top performance in the
ILSVRC2013 competition.

As for the requirement of a fixed resolution, He et al. [26]
proposed a new pooling strategy, i.e. spatial pyramid pooling, to
eliminate the restriction of the image size. The resulting SPP-net
could boost the accuracy of a variety of published CNN archi-
tectures despite their different designs.

In addition to the commonly used configuration of the CNN
structure (five convolutional layers plus three fully connected
layers), there are also approaches trying to explore deeper net-
works. In contrast to AlexNet, VGG [31] increased the depth of the
network by adding more convolutional layers and taking advan-
tage of very small convolutional filters in all layers. Similarly,
Szegedy et al. [20] proposed a model, GoogLeNet, which also has
quite a deep structure (22 layers) and has achieved leading per-
formance in the ILSVRC2014 competition [189].

Despite the top-tier classification performances that have been
achieved by various models, CNN-related models and applications
are not limited to only image classification. Based on these models,
new frameworks have been derived to address other challenging
tasks, such as object detection, semantic segmentation, etc.

There are two well-known derived frameworks: RCNN (Regions
with CNN features) [29] and FCN (fully convolutional network)
[146], mainly designed for object detection and semantic seg-
mentation respectively, as shown in Fig. 7.

The core idea of RCNN is to generate multiple object proposals,
extract features from each proposal using a CNN, and then classify
each candidate window with a category-specific linear SVM. The
“recognition using regions” paradigm received encouraging per-
formance in object detection and has gradually become the gen-
eral pipeline for recent promising object detection algorithms
[177,178,183,184]. However, the performance of RCNN relies too
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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much on the precision of the object location, which may limit its
robustness. Besides, the generation and processing of large num-
ber of proposals would also decrease its efficiency. Recent devel-
opments [164,177,178,183,185] are mainly focused on these two
aspects.

RCNN takes the CNN models as feature extractor and does not
make any change to the networks. In contrast, FCN proposes a
technique to recast the CNN models as fully convolutional nets.
The recasting technique removes the restriction of image resolu-
tion and could produce correspondingly-sized output efficiently.
Although FCN is proposed mainly for semantic segmentation, the
technique could also be utilized in other applications, e.g. image
classification [191], edge detection [188] etc.

Aside from creating various models, the usage of these models
also demonstrates several characteristics:

2.1.3.1. Large networks. One intuitive idea is to improve the per-
formance of CNNs by increasing their size, which includes
increasing the depth (the number of levels) and the width (the
number of units at each level) [20]. Both GoogLeNet [20] and VGG
[31], described above, adopted quite large networks, 22 layers and
19 layers respectively, demonstrating that increasing the size is
beneficial for image recognition accuracy.

Jointly training multiple networks could lead to better perfor-
mance than a single one. There are also many researchers
[27,33,190] who designed large networks by combining different
deep structures in cascade mode, where the output of the former
networks is utilized by the latter ones, as shown in Fig. 8.

The cascade architecture can be utilized to handle different
tasks, and the function of the prior networks (i.e. the output) may
vary with the tasks. For example, Wang et al. [190] connected two
networks for object extraction, and the first network is used for
object localization. Therefore, the output is the corresponding
coordinates of the object. Sun et al. [33] proposed three-level
carefully designed convolutional networks to detect facial key-
points. The first level provides highly robust initial estimations,
while the following two levels fine-tune the initial prediction.
Similarly, Ouyang et al. [27] adopted a multi-stage training scheme
proposed by Zeng et al. [32], i.e. classifiers at the previous stages
jointly work with the classifiers at the current stage to deal with
misclassified samples.

2.1.3.2. Multiple networks. Another tendency in current applica-
tions is to combine the results of multiple networks, where each of
the networks can execute the task independently, instead of
designing a single architecture and jointly training the networks
inside to execute the task, as seen in Fig. 9.

Miclut et al. [34] gave some insight into how we should gen-
erate the final results when we have received a set of scores. Prior
to the AlexNet [6], Ciresan et al. [5] proposed a method called
Multi-Column DNN (MCDNN) which combines several DNN col-
umns and averages their predictions. This model achieved human-
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/
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competitive results on tasks such as the recognition of hand-
written digits or traffic signs. Recently, Ouyang et al. [27] also
conducted an experiment to evaluate the performance of model
combination strategies. It learnt 10 models with different settings
and combined them in an averaging scheme. Results show that
models generated in this way have high diversity and are com-
plementary to each other in improving the detection results.

2.1.3.3. Diverse networks. Aside from altering the CNN structure,
some researchers also attempt to introduce information from
other sources, e.g. combining them with shallow structures, inte-
grating contextual information, as illustrated in Fig. 10.

Shallow methods can give additional insight into the problem.
In the literature, examples can be found about combining shallow
methods and deep learning frameworks [35], i.e. take a deep
learning method to extract features and input these features to the
shallow learning method, e.g. an SVM. One of the most repre-
sentative and successful algorithms is the RCNN method [29],
which feeds the highly distinctive CNN features into a SVM for the
final object detection task. Besides that, deep CNNs and Fisher
Vectors (FV) are complementary [36] and can also be combined to
significantly improve the accuracy of image classification.

Contextual information is sometimes available for an object
detection task, and it is possible to integrate global context infor-
mation with the information from the bounding box. In the Ima-
geNet Large Scale Visual Recognition Challenge 2014 (ILSVRC
2014), the winning team NUS concatenated all the raw detection
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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scores and combined them with the outputs from a traditional
classification framework by context refinement [37]. Similarly,
Ouyang et al. [27] also took the 1000-class image classification
scores as the contextual features for object detection.

2.2. Restricted Boltzmann Machines (RBMs)

A Restricted Boltzmann Machine (RBM) is a generative sto-
chastic neural network, and was proposed by Hinton et al. in 1986
[53]. An RBM is a variant of the Boltzmann Machine, with the
restriction that the visible units and hidden units must form a
bipartite graph. This restriction allows for more efficient training
algorithms, in particular the gradient-based contrastive divergence
algorithm [54].

Since the model is a bipartite graph, the hidden units H and the
visible units V1 are conditionally independent. Therefore,

P HV1ð Þ ¼ P H1V1ð ÞP H2V1ð Þ…P HnV1ð Þ ð1Þ
In the equation, both H and V1 satisfy Boltzmann distribution.

Given input V1, we can get H through P HV1ð Þ. Similarly, we can
figure out V2 through P V2Hð Þ. By adjusting the parameters, we can
minimize the difference between V1 and V2, and the resulting H
will act as a good feature of V1.

Hinton [55] gave a detailed explanation and provided a prac-
tical way to train RBMs. Further work in [56] discussed the main
difficulties of training RBMs, their underlying reasons and pro-
posed a new algorithm, which consists of an adaptive learning rate
and an enhanced gradient, to address those difficulties.

A well-known development of RBM can be found in [57]: the
model approximates the binary units with noisy rectified linear
units to preserve information about relative intensities as infor-
mation travels through multiple layers of feature detectors. The
refinement not only functions well in this model, but is also widely
employed in various CNN-based approaches [6,25].

Utilizing RBMs as learning modules, we can compose the fol-
lowing deep models: Deep Belief Networks (DBNs), Deep Boltz-
mann Machines (DBMs) and Deep Energy Models (DEMs). The
comparison between the three models is shown in Fig. 11.

DBNs have undirected connections at the top two layers which
form an RBM and directed connections to the lower layers. DBMs
have undirected connections between all layers of the network.
DEMs have deterministic hidden units for the lower layers and
stochastic hidden units at the top hidden layer [73].

A summary of these three deep models along with related
representative references is provided in Table 2.

In the next sections, we will explain these models and describe
their applications to computer vision tasks respectively.

2.2.1. Deep Belief Networks (DBNs)
The Deep Belief Network (DBN), proposed by Hinton 21, was a

significant advance in deep learning. It is a probabilistic generative
model which provides a joint probability distribution over observable
data and labels. A DBN first takes advantage of an efficient layer-by-
layer greedy learning strategy to initialize the deep network, and then
fine-tunes all of the weights jointly with the desired outputs. The
greedy learning procedure has two main advantages [58]: (1) it
generates a proper initialization of the network, addressing the dif-
ficulty in parameter selection which may result in poor local optima
to some extent; (2) the learning procedure is unsupervised and
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/



Fig. 11. The comparison of the three models [73] (a) DBN, (b) DBM and (c) DEM.

Table 2
An overview of representative RBM-based methods.

Method Characteristics Advantages Drawbacks References

DBN [49] Undirected connections at the top two
layers and directed connections at the
lower layers

1. Properly initializes the network, which
prevents poor local optima to some extent

2. Training is unsupervised, which removes
the necessity of labeled data for training

Due to the initialization process, it is
computationally expensive to create a
DBN model

Lee et al.
[59,61,62]
Nair et al. [60]

DBM [65] Undirected connections between all layers
of the network

Deals more robustly with ambiguous inputs by
incorporating top–down feedback

The joint optimization is time-consuming Hinton et al. [68]
Cho et al. [69]
Montavon et al.
[70]
Goodfellow
[71,72]
Srivastava et al.
[174]

DEM [73] Deterministic hidden units for the lower
layers and stochastic hidden units at the
top hidden layer

Produces better generative models by allowing
the lower layers to adapt to the training of
higher layers

The learnt initial weight may not have
good convergence

Carreira et al.
[175]
Elfwing et al. [74]
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requires no class labels, so it removes the necessity of labeled data for
training. However, creating a DBN model is a computationally
expensive task that involves training several RBMs, and it is not clear
how to approximate maximum-likelihood training to further opti-
mize the model [12].

DBNs successfully focused researchers' attention on deep
learning and as a consequence, many variants were created [59–
62]. Nair et al. [60] developed a modified DBN where the top-layer
model utilizes a third-order Boltzmann machine for object
recognition. The model in [59] learned a two-layer model of nat-
ural images using sparse RBMs, in which the first layer learns local,
oriented, edge filters, and the second layer captures a variety of
contour features as well as corners and junctions. To improve the
robustness against occlusion and random noise, Lee et al. [63]
applied two strategies: one is to take advantage of sparse con-
nections in the first layer of the DBN to regularize the model, and
the other is to develop a probabilistic de-noising algorithm.

When applied to computer vision tasks, a drawback of DBNs is
that they do not consider the 2D structure of an input image. To
address this problem, the Convolutional Deep Belief Network
(CDBN) was introduced [61]. CDBN utilized the spatial information
of neighboring pixels by introducing convolutional RBMs, gen-
erating a translation invariant generative model that scales well
with high dimensional images. The algorithm was further
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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extended in [64] and achieved excellent performance in face
verification.

2.2.2. Deep Boltzmann Machines (DBMs)
The Deep Boltzmann Machine (DBM), proposed by Sala-

khutdinov et al. [65], is another deep learning algorithmwhere the
units are again arranged in layers. Compared to DBNs, whose top
two layers form an undirected graphical model and whose lower
layers form a directed generative model, the DBM has undirected
connections across its structure.

Like the RBM, the DBM is also a subset of the Boltzmann family.
The difference is that the DBM possesses multiple layers of hidden
units, with units in odd-numbered layers being conditionally
independent of even-numbered layers, and vice versa. Given the
visible units, calculating the posterior distribution over the hidden
units is no longer tractable, resulting from the interactions
between the hidden units. When training the network, a DBM
would jointly train all layers of a specific unsupervised model, and
instead of maximizing the likelihood directly, the DBM uses a
stochastic maximum likelihood (SML) [161] based algorithm to
maximize the lower bound on the likelihood, i.e. performing only
one or a few updates using a Markov chain Monte Carlo (MCMC)
method between each parameter update. To avoid ending up in
poor local minima which leave many hidden units effectively dead,
a greedy layer-wise training strategy is also added into the layers
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/
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when pre-training the DBM network, much in the same way as the
DBN [12].

This joint learning has brought promising improvements, both
in terms of likelihood and the classification performance of the
deep feature learner. However, a crucial disadvantage of DBMs is
the time complexity of approximate inference is considerably
higher than DBNs, which makes the joint optimization of DBM
parameters impractical for large datasets. To increase the effi-
ciency of DBMs, some researchers introduced an approximate
inference algorithm [66,67], which utilizes a separate “recogni-
tion” model to initialize the values of the latent variables in all
layers, thus effectively accelerating the inference.

There are also many other approaches that aim to improve the
effectiveness of DBMs. The improvements can either take place at
the pre-training stage [68,69] or at the training stage [70,71]. For
example, Montavon et al. [70] introduced the centering trick to
improve the stability of a DBM and made it to be more dis-
criminative and generative. The multi-prediction training scheme
[72] was utilized to jointly train the DBM which outperforms the
previous methods in image classification proposed in [71].

2.2.3. Deep Energy Models (DEMs)
The Deep Energy Model (DEM), introduced by Ngiam et al. [73],

is a more recent approach to train deep architectures. Unlike DBNs
and DBMs which share the property of having multiple stochastic
hidden layers, the DEM just has a single layer of stochastic hidden
units for efficient training and inference.

The model utilizes deep feed forward neural networks to model
the energy landscape and is able to train all layers simultaneously.
By evaluating the performance on natural images, it demonstrated
the joint training of multiple layers yields qualitative and quanti-
tative improvements over greedy layer-wise training. Ngiam et al.
[73] used Hybrid Monte Carlo (HMC) to train the model. There are
also other options including contrastive divergence, score match-
ing, and others. Similar work can be found in [74].

Although RBMs are not as suitable as CNNs for vision applica-
tions, there are also some good examples adopting RBMs to vision
tasks. The Shape Boltzmann Machine was proposed by Eslami
et al. [168] to handle the task of modeling binary shape images,
which learns high quality probability distributions over object
shapes, for both realism of samples from the distribution and
generalization to new examples of the same shape class. Kae et al.
[169] combined the CRF and the RBM to model both local and
global structure in face segmentation, which has consistently
reduced the error in face labeling. A new deep architecture has
been presented for phone recognition [170] that combines a
Mean-Covariance RBM feature extraction module with a standard
DBN. This approach attacks both the representational inefficiency
issues of GMMs and an important limitation of previous work
applying DBNs to phone recognition.

2.3. Autoencoder

The autoencoder is a special type of artificial neural network
used for learning efficient encodings [75]. Instead of training the
network to predict some target value Y given inputs X, an auto-
encoder is trained to reconstruct its own inputs X, therefore, the
encoder
code

decoder
reconstruction

error

input

Fig. 12. The pipeline of an autoencoder.
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output vectors have the same dimensionality as the input vector.
The general process of an autoencoder is shown in Fig. 12:

During the process, the autoencoder is optimized by minimiz-
ing the reconstruction error, and the corresponding code is the
learned feature.

Generally, a single layer is not able to get the discriminative and
representative features of raw data. Researchers now utilize the
deep autoencoder, which forwards the code learnt from the pre-
vious autoencoder to the next, to accomplish their task.

The deep autoencoder was first proposed by Hinton et al. [76],
and is still extensively studied in recent papers [77–79]. A deep
autoencoder is often trained with a variant of back-propagation,
e.g. the conjugate gradient method. Though often reasonably
effective, this model could become quite ineffective if errors are
present in the first few layers. This may cause the network to learn
to reconstruct the average of the training data. A proper approach
to remove this problem is to pre-train the network with initial
weights that approximate the final solution [76]. There are also
variants of autoencoder proposed to make the representation as
“constant” as possible with respect to the changes in input.

In Table 3, we list some well-known variants of the autoencoder,
and briefly summarize their characteristics and advantages. In the
next sections, we describe three important variants: sparse auto-
encoder, denoising autoencoder and contractive autoencoder.

2.3.1. Sparse autoencoder
A Sparse autoencoder aims to extract sparse features from raw

data. The sparsity of the representation can either be achieved by
penalizing the hidden unit biases [50,59,80] or by directly pena-
lizing the output of hidden unit activations [81,82].

Sparse representations have several potential advantages [50]:
1) using high-dimensional representations increases the likelihood
that different categories will be easily separable, just as in the
theory of SVMs; 2) sparse representations provide us with a sim-
ple interpretation of the complex input data in terms of a number
of “parts”; 3) biological vision uses sparse representations in early
visual areas [83].

A quite well-known variant of the sparse autoencoder is a nine-
layer locally connected sparse autoencoder with pooling and local
contrast normalization [84]. This model allows the system to train
a face detector without having to label images as containing a face
or not. The resulting feature detector is robust to translation,
scaling and out-of-plane rotation.

2.3.2. Denoising autoencoder
In order to increase the robustness of the model, Vincent pro-

posed a model called denoising autoencoder (DAE) [85,86], which
can recover the correct input from a corrupted version, thus for-
cing the model to capture the structure of the input distribution.
The process of a DAE is shown in Fig. 13.

2.3.3. Contractive autoencoder
Contractive autoencoder (CAE), proposed by Rifai et al. [87],

followed after the DAE and shared a similar motivation of learning
robust representations [12]. While a DAE makes the whole map-
ping robust by injecting noise in the training set, a CAE achieves
robustness by adding an analytic contractive penalty to the
reconstruction error function.

Although the notable differences between DAE and CAE are
stated by Bengio et al. [12], Alain et al. [88] suggested DAE and a
form of CAE are closely related to each other: a DAE with small
corruption noise can be valued as a type of CAE where the con-
tractive penalty is on the whole reconstruction function rather
than just on the encoder. Both DAE and CAE have been successfully
used in the Unsupervised and Transfer Learning Challenge [89].
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/



Table 3
Variants of the autoencoder.

Method Characteristics Advantages

Sparse Adds a sparsity penalty to force the representation to be sparse 1. Make the categories to be more separable
2. Make the complex data more meaningful
3. In line with biological vision system

Autoencoder [50,78]

Denoising Recovers the correct input from a corrupted version More robust to noise
Autoencoder [85,86]
Contractive Adds an analytic contractive penalty to the reconstruction error

function
Better captures the local directions of variation dictated by the data

Autoencoder [87]
Saturating Raises reconstruction error for inputs not near the data manifold Limits the ability to reconstruct inputs which are not near the data

manifoldautoencoder [14]
Convolutional Shares weights among all locations in the input, preserving spatial

locality
Utilizes the 2D image structure

autoencoder [90–92]
Zero-bias Utilizes proper shrinkage function to train autoencoders without

additional regularization
More powerful in learning representations on data with very high
intrinsic dimensionalityautoencoder [93]

inputcorrupted input reconstruction

hidden node reconstruct error

Fig. 13. Denoising autoencoder [85].
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2.4. Sparse coding

The purpose of sparse coding is to learn an over-complete set of
basic functions to describe the input data [94]. There are numerous
advantages of sparse coding [95–98]: (1) it can reconstruct the
descriptor better by using multiple bases and capturing the corre-
lations between similar descriptors which share bases; (2) the
sparsity allows the representation to capture salient properties of
images; (3) it is in line with the biological visual system, which
argues that sparse features of signals are useful for learning;
(4) image statistics study shows that image patches are sparse sig-
nals; (5) patterns with sparse features are more linearly separable.

2.4.1. Solving the sparse coding equation
In this subsection, we will briefly describe how to solve the

sparse coding problem, i.e. how to get the sparse representation.
The general objective function of sparse coding is as below.

min
D

1
T

XT
t ¼ 1

min
hðtÞ

1
2

xðtÞ �DhðtÞ 2
2þλ hðtÞ

������
1

��� �������
�

ð2Þ

The first term of the function is the reconstruction error (DhðtÞ is
the reconstruction of xðtÞ), while the second L1 regularization term
is the sparsity penalty. The L1 norm regularization has been ver-
ified to lead to sparse representations [99]. Eq. (2) can be solved
with a regression method called LASSO (Least Absolute Shrinkage
and Selection Operator). It cannot get the analytic solution of the
sparse representation. Therefore, solving of the problem normally
results in an intractable computation.

To optimize the sparse coding model, there is an alternating pro-
cedure between updating the weights D and inferring the feature
activations h of the input given the current setting of the weights.

1. Weight update

One commonly used algorithm for updating the weights is
called projected gradient algorithm [100], which renormalizes
each column of the weight matrix right after each update of the
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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traditional Gradient descent algorithm [101]. The normalization is
necessary for the sparsity penalty to have any effect. However,
gradient descent using iterative projections often shows slow
convergence. In 2007, Lee et al. [102] derived a Lagrange dual
method, which is much more efficient than gradient-based meth-
ods. Given a dictionary, the paper further proposed a feature-sign
search algorithm to learn the sparse representation. The combina-
tion of these two algorithms enabled the performance to be
significantly better than the previous ones. However, it cannot
efficiently handle very large training sets, or dynamic training data
that is changing over time. Thus it inherently accesses the whole
training set at each iteration. To address this issue, an online
approach [103,104] was proposed for learning dictionaries that
processes one element (or a small subset) of the training set at a
time. The algorithm then updates the dictionary using block-
coordinate descent [105] with warm restarts, which does not
require any learning rate tuning.
Gregor et al. [106] tried to accelerate the dictionary learning in
another way: it imports the idea of Coordinate Descent algorithm
(CoD) which only updates the “most promising” hidden units and
therefore leads to dramatic reduction in the number of iterations
to reach a given code prediction error.

2. Activation inference

Given a set of the weights, we need to infer the feature acti-
vations. A popular algorithm for sparse coding inference is the
Iterative Shrinkage-Thresholding Algorithm (ISTA) [107], which
takes a gradient step to optimize the reconstruction term, followed
by a sparsity term which has a closed form shrinkage operation.
Although simple and effective, the algorithm suffers from a severe
problem that it converges quite slowly. The problem is partly
solved by the Fast Iterative shrinkage-Thresholding Algorithm
(FISTA) approach [108], which preserves the computational sim-
plicity of ISTA, but converges more quickly due to the introduction
of a “momentum” term in the dynamics (the convergence com-
plexity changed from Oð1=tÞ to Oð1=t2Þ). Both the ISTA and FISTA
inference involve some sort of iterative optimization (i.e. LASSO),
which is of high computational complexity. In contrast, Kavuk-
cuoglu et al. [109] utilized a feed-forward network to approximate
the sparse codes, which dramatically accelerated the inference
process. Furthermore, the LASSO optimization stage was replaced
by marginal regression in [110], effectively scaling up the sparse
coding framework to large dictionaries.

2.4.2. Developments
As we have briefly stated how to generate the sparse repre-

sentation given the objective function, in this subsection, we will
introduce some well-known algorithms related to sparse coding,
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/
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SC has less restrictive constraint 
on the assignment than VQ 

Ignore the mutual dependence 
of the local features

LSC[113]

Enhance similar features to keep the 
mutual dependency in the sparse 
coding

HLSC[114]

Define the similarity among 
the instances by a hyper graph

LCC[95]

Enhance the locality by  explicitly 
encouraging the coding to be local

LLC[97]

Accelerate the process

Time consuming

SVC[118]

Enhance the locality by  adopting 
a smoother coding scheme

ASGD[119]

State-of-the-art on 
ImageNet prior to CNNs

Fig. 14. The well-known sparse coding algorithms, relations, contributions and drawbacks.

K-means Sparse Coding Laplacian SC

:   Features to be quantized

:  Visual words

Fig. 15. The difference between K-means, sparse coding and Laplacian Sparse Coding [113] (a) K-means (b) sparse coding (c) Laplacian SC.
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in particular those that are used in computer vision tasks. The
well-known sparse coding algorithms and relations, along with
their contributions and drawbacks are shown in Fig. 14.

One representative algorithm for sparse coding is called Sparse
coding SPM (ScSPM) [98], which is an extension of the Spatial
Pyramid Matching (SPM) method [111]. Unlike the SPM, which
uses vector quantization (VQ) for the image representation, ScSPM
utilizes sparse coding (SC) followed by multi-scale spatial max
pooling. The codebook of SC is an over-complete basis and each
feature can activate a small number of them. Compared to VQ, SC
receives a much lower reconstruction error due to the less
restrictive constraint on the assignment. Coates et al. [112] further
investigated the reasons for the success of SC over VQ in detail. A
drawback of ScSPM is that it deals with local features separately,
thus ignores the mutual dependence among them, which makes it
too sensitive to feature variance, i.e. the sparse codes may vary a
lot, even for similar features.

To address this problem, Gao et al. [113] proposed a Laplacian
Sparse Coding (LSC) approach, in which similar features are not
only assigned to optimally-selected cluster centers, but that also
guarantees the selected cluster centers to be similar. The differ-
ence between K-means, Sparse Coding and Laplacian Sparse Cod-
ing is shown in Fig. 15.

By adding the locality preserving constraint to the objective of
sparse coding, the LSC can keep the mutual dependency in the
sparse coding procedure. Gao et al. [114] further raised a Hyper-
graph Laplacian Sparse Coding (HLSC) method, which extends the
LSC to the case where the similarity among the instances is
defined by a hyper graph. Both LSC and HLSC enhance the
robustness of sparse coding.
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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Another way to address the sensitivity problem is the hierarchical
sparse coding method proposed by Yu et al. [115]. It introduced a two-
layer sparse coding model: the first layer encodes individual patches,
and the second layer jointly encodes the set of patches that belong to
the same group. Therefore, the model leverages the spatial neigh-
borhood structure by modeling the higher-order dependency of
patches in the same local region of an image. Besides that, it is a fully
automatic method to learn features from the pixel level, rather than
for example the hand-designed SIFT feature. The hierarchical sparse
coding is utilized in another research [116] to learn features for
images in an unsupervised fashion. The model is further improved by
Zeiler et al. [117].

In addition to the sensitivity, another method exists for improving
the ScSPM algorithm, by considering the locality. Yu et al. [95]
observed that the ScSPM results tend to be local, i.e. nonzero coeffi-
cients are often assigned to bases nearby. As a result of these obser-
vations, they suggested a modification to ScSPM, called Local Coor-
dinate Coding (LCC), which explicitly encourages the coding to be
local. They also theoretically showed that locality is more important
than sparsity. Experiments have shown that locality can enhance
sparsity and that sparse coding is helpful for learning only when the
codes are local, so it is preferred to let similar data have similar non-
zero dimensions in their codes. Although LCC has a computational
advantage over classical sparse coding, it still needs to solve the L1-
norm optimization problem, which is time-consuming. To accelerate
the learning process, a practical coding method called Locality-
Constrained Linear Coding (LLC) was introduced [97], which can be
seen as a fast implementation of LCC that replaces the L1-norm
regularization with L2-norm regularization.
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/
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Table 4
Comparisons among four categories of deep learning.

Properties CNNs RBMs AutoEncoder Sparse coding

Generalization Yes Yes Yes Yes
Unsupervised learning No Yes Yes Yes
Feature learning Yes Yes* Yes* No
Real-time training No No Yes Yes
Real-time prediction Yes Yes Yes Yes
Biological understanding No No No Yes
Theoretical justification Yes* Yes Yes Yes
Invariance Yes* No No Yes
Small training set Yes* Yes* Yes Yes

Note: ‘Yes’ indicates that the category does well in the property; otherwise, they
will be marked by ‘No’. The ‘Yes*’ refers to a preliminary or weak ability.
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A comparison between VQ, ScSPM and LLC [97] are shown in
Fig. 16.

Besides LLC, there is another model, called super-vector coding
(SVC) [118], which can also guarantee local sparse coding. Given x,
SVC will activate those coordinates associated to the neighborhood
of x to achieve the sparse representation. SVC is a simple extension
of VQ by expanding VQ in local tangent directions, and is thus a
smoother coding scheme.

A remarkable result is shown in [119], in which the proposed
averaging stochastic gradient descent (ASGD) scheme combined
LCC and SVC algorithm to scale the image classification to large-
scale dataset, and produced state-of-the-art results on ImageNet
object recognition tasks prior to the rise of CNN architectures.

Another well-known smooth coding method is presented in
[110], called Smooth Sparse Coding (SSC). The method incorpo-
rates the neighborhood similarity and temporal information into
sparse coding, leading to codes that represent a neighborhood
rather than an individual sample and that have lower mean square
reconstruction error.

More recently, He et al. [120] proposed a new unsupervised
feature learning framework, called Deep Sparse Coding (DeepSC),
which extends sparse coding to a multi-layer architecture and has
the best performance among the sparse coding schemes
described above.

2.5. Discussion

In order to compare and understand the above four categories
of deep learning, we summarize their advantages and dis-
advantages with respect to diverse properties, as listed in Table 4.
There are nine properties in total. In details,'Generalization' refers
to whether the approach has been shown to be effective in diverse
media (e.g. text, images, audio) and applications, including speech
recognition, visual recognition and so on. ‘Unsupervised learning’
refers to the ability to learn a deep model without supervisory
annotation. ‘Feature learning’ is the ability to automatically learn
features based on a data set. ‘Real-time training’ and ‘Real-time
prediction’ refer to the efficiency of the learning and inferring
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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processes, respectively. ‘Biological understanding’ and ‘Theoretical
justification’ represent whether the approach has significant bio-
logical underpinnings or theoretical foundations, respectively.
‘Invariance’ refers to whether the approach has been shown to be
robust to transformations such as rotation, scale and translation.
‘Small training set’ refers to the ability to learn a deep model using
a small number of examples. It is important to note that the table
only represents the general current findings and not future pos-
sibilities nor specialized niche cases.
3. Applications and results

Deep learning has been widely adopted in various directions of
computer vision, such as image classification, object detection,
image retrieval and semantic segmentation, and human pose
estimation, which are key tasks for image understanding. In this
part, we will briefly summarize the developments of deep learning
(all of the results are referred from the original papers), especially
the CNN based algorithms, in these five areas.

3.1. Image classification

The image classification task consists of labeling input images
with a probability of the presence of a particular visual object class
[129], as is shown in Fig. 17.

Prior to deep learning, perhaps the most commonly used
methods in image classification were methods based on bags of
visual words (BoW) [130], which first describes the image as a
histogram of quantized visual words, and then feeds the histogram
into a classifier (typically an SVM [131]). This pipeline was based
on the orderless statistics, to incorporate spatial geometry into the
BoW descriptors. Lazebnik et al. [111] integrated a spatial pyramid
approach into the pipeline, which counts the number of visual
words inside a set of image sub-regions instead of the whole
region. Thereafter, this pipeline was further improved by import-
ing sparse coding optimization problems to the building of code-
books [119], which receives the best performance on the ImageNet
1000-class classification in 2010. Sparse coding is one of the basic
algorithms in deep learning, and it is more discriminative than the
original hand-designed ones, i.e. HOG [132] and LBP [133].

The approaches based on BoW just concern the zero order
statistics (i.e. counts of visual words), discarding a lot of valuable
information of the image [129]. The method introduced by Per-
ronnin et al. [134] overcame this issue and extracted higher order
statistics by employing the Fisher Kernel [135], achieving the
state-of-the-art image classification result in 2011. In this phase,
researchers tend to focus on the higher order statistics, which is
the core idea of deep learning.

Krizhevsky et al. [6] represented a turning point for large-scale
object recognition when a large CNN was trained on the ImageNet
database [136], thus proving that CNN could, in addition to
handwritten digit recognition [17], perform well on natural image
classification. The proposed AlexNet won the ILSVRC 2012, with a
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/



Fig. 17. Image classification examples from AlexNet [6]. Each image has one ground truth label, followed by the top 5 guesses with probabilities.

Fig. 18. ImageNet classification results on test dataset.
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top-5 error rate of 15.3%, which sparked significant additional
activity in CNN research. In Fig. 18, we present the state-of-the-art
results on the ImageNet test dataset since 2012, along with the
pipeline of ILSVRC.

OverFeat [145] proposed a multiscale and sliding window
approach, which could find the optimal scale of the image and
fulfill different tasks simultaneously, i.e. classification, localization
and detection. Specifically, the algorithm decreased the top-5 test
error to 13.6%. Zeiler et al. [52] introduced a novel visualization
technique to give insight into the function of intermediate feature
layers and further adjusted a new model, which outperformed
AlexNet, reaching 11.7% top-5 error rate, and had top performance
at ILSVRC 2013.

ILSVRC 2014 witnessed the steep growth of deep learning, as
most participants utilized CNNs as the basis for their models.
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Again significant progress had been made in image classification,
as the error was almost halved since ILSVRC2013. The SPP-net [26]
model eliminated the restriction of the fixed input image size and
could boost the accuracy of a variety of published CNN archi-
tectures despite their different designs. Multiple SPP-nets further
reduced the top-5 error rate to 8.06% and ranked third in the
image classification challenge of ILSVRC 2014. Along with the
improvements of the classical CNN model, another characteristic
shared by the top-performing models is that the architectures
became deeper, as shown by GoogLeNet [20] (rank 1 in ILSVRC
2014) and VGG [31] (rank 2 in ILSVRC 2014), which achieved 6.67%
and 7.32% respectively.

Despite the potential capacity possessed by larger models, they
also suffered from overfitting and underfitting problems when
there is little training data or little training time. To avoid this
shortcoming, Wu et al. [159] developed new strategies, i.e. Deep-
Image, for data augmentation and usage of multi-scale images.
They also built a large supercomputer for deep neural networks
and developed a highly optimized parallel algorithm, and the
classification result achieved a relative 20% improvement over the
previous one with a top-5 error rate of 5.33%. More Recently, He
et al. [162] proposed the Parametric Rectified Linear Unit to gen-
erate the traditional rectified activation units and derived a robust
initialization method. This scheme led to 4.94% top-5 test error
and surpassed human-level performance (5.1%) for the first time.
Similar results were achieved by Ioffe et al. [163], whose method
reached a 4.8% test error by utilizing an ensemble of batch-
normalized networks.
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/



Fig. 19. Object detection examples from RCNN [29]. The red box extracts the salient objects contains, the green box contains the prediction score. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Object detection results of the VOC 2007 and VOC 2012 challenges.

Methods Training
data

VOC 2007 VOC 2012

mAP(A/
C-Net)

mAP
(VGG-
Net)

mAP(Alex-Net) mAP
(VGG-
Net)

DPM [176] 07 29.09% – – –

DetectorNet
[121]

12 30.41% – – –

DeepMultiBox
[147]

12 29.22% – – –

RCNN [29] 07 54.2% 62.2% – –

RCNN [29]þBB 07 58.5% 66% – –

RCNN [29] 12 – – 49.6% 59.2%
RCNN [29]þBB 12 – – 53.3% 62.4%
SPP-Net [26] 07 55.2% 60.4%
SPP-Net [26] 07þ12 64.6%
SPP-Net [26]þ
BB

07 59.2% 63.1%

FRCN [177] 07 – 66.9% – 65.7%
FRCN [177] 07þþ12 – 70.0% – 68.4%
RPN [178] 07 59.9% 69.9%
RPN [178] 12 67%
RPN [178] 07þ12 – 73.2%
RPN [178] 07þþ12 – 70.4%
MR_CNN [184] 07 – 74.9% – 69.1%
MR_CNN [184] 12 – – – 70.7%
FGS [185] 07 66.5% -
FGS [185]þBB 07 68.5% 66.4%
NoC [186] 07þ12 62.9% 71.8% 67.6%
NoC [186]þBB 07þ12 73.3% 68.8%

Note: Training data: “07”: VOC07 trainval; “12”: VOC2 trainval; “07þ12”: VOC07
trainval union with VOC12 trainval; “07þþ12”: VOC07 trainval and test unionwith
VOC12 trainval; BB: bounding box regression; A/C-Net: approaches based on
AlexNet [6] or Clarifai [52]; VGG-Net: approaches based on VGG-Net [31].
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3.2. Object detection

Object detection is different from but closely related to an
image classification task. For image classification, the whole image
is utilized as the input and the class label of objects within the
image are estimated. For object detection, besides outputting the
information of the presence of a given class, we also need to
estimate the position of the instance (or instances), as shown in
Fig. 19. A detection window is regarded as correct if the outputted
bounding box has sufficiently large overlap with the ground truth
object (usually more than 50%).

The challenging PASCAL VOC datasets are the most widely
employed for the evaluation of object detection. There are 20
classes in this database. During the test phase, an algorithm should
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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predict the bounding boxes of the objects belong to each class in a
test image. In this section, we will describe the recent develop-
ments of deep learning schemes for object detection, according to
their achievements in VOC 2007 and VOC 2012. The related
advances are shown in Table 5.

Before the surge of deep learning, the Deformable Part Model
(DPM) [176] was the most effective method for object detection. It
takes advantage of deformable part models and detects objects
across all scales and locations on the image in an exhaustive
manner. After integrating with some post-processing techniques,
i.e. bounding box prediction and context rescoring, the model
achieved 29.09% average precision for VOC 2007 test set.

As deep learning methods (especially the CNN-based methods)
had achieved top tier performance on image classification tasks,
researchers started to transfer it to the object detection problem.
An early deep learning approach for object detection was intro-
duced by Szegedy et al. [121]. The paper proposed an algorithm,
called DetectorNet, which replaced the last layer of AlexNet [6]
with a regression layer. The algorithm captured object location
well and achieved competitive results on the VOC2007 test set
with the most advanced algorithms at that time. To handle mul-
tiple instances of the same object in the image, DeepMultiBox
[147] also showed a saliency-inspired neural network model.

A general pattern for current successful object detection sys-
tems is to generate a large pool of candidate boxes and classify
those using CNN features. The most representative approach is the
RCNN scheme proposed by Girshick et al. [29]. It utilizes selective
search [151] to generate object proposals, and extracts the CNN
features for each proposal. The features are then fed into an SVM
classifier to decide whether the related candidate windows con-
tain the object or not. RCNNs improved the benchmark by a large
margin, and became the base model for many other promising
algorithms [164,177,178,183,185].

The algorithms derived from RCNNs are mainly divided into
two categories: the first category aims to accelerate the training
and testing process. Although an RCNN has excellent object
detection accuracy, it is computationally intensive because it first
warps and then processes each object proposal independently.
Consequently, some well-known algorithms which aim to improve
its efficiency appeared, such as SPP-net [26], FRCN [177], RPN
[178], YOLO [179] etc. These algorithms detect objects faster, while
achieving comparable mAP with state-of-the-art benchmarks.

The second category is mainly intended to improve the accu-
racy of RCNNs. The performance of the “recognition using regions”
paradigm is highly dependent on the quality of object hypotheses.
Currently, there are many object proposal algorithms, such as
objectness [150], selective search [151], category-independent
object proposals [152], BING [153], and edge boxes [154] et al.
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/
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These schemes are exhaustively evaluated in [155]. Although those
schemes are good at finding rough object positions, they normally
could not accurately localize the whole object via a tight bounding
box, which forms the largest source of detection error [180,181].
Therefore, many approaches have emerged that try to correct the
poor localizations.

One important direction of these methods is to combine them
with semantic segmentation techniques [164,182,183]. For exam-
ple, the SDS scheme proposed by Hariharan et al. [164] utilizes
segmentation to mask-out the background inside the detection,
resulting in improved performance for object detection (from
49.6% to 50.7%, both without bounding box regression). On the
other hand, the UDS method [182] unified the object detection and
semantic segmentation process in one framework, by enforcing
their consistency and integrating context information, the model
demonstrated encouraging performance on both tasks. Similar
works come with segDeepM proposed by Zhu et al. [183] and
MR_CNN in [184], which also incorporate the segmentation along
with additional evidence to boost the accuracy of object detection.

There are also approaches which attempt to precisely locate the
object in other ways. For instance, FGS [185] addresses the loca-
lization problem via two methods: 1) develop a fine-grained
search algorithm to iteratively optimize the location; 2) train a
CNN classifier with a structured SVM objective to balance between
classification and localization. The combination of these methods
demonstrates promising performance on two challenging
datasets.

Aside from the efforts in object localization, the NoC framework
in [186] tries to evolve efforts in the object classification step. In
place of the commonly used multi-layer perceptron (MLP), it
explored different NoC structures to implement the object
classifiers.

It is much cheaper and easier to collect a large amount of
image-level labels than it is to collect detection data and label it
with precise bounding boxes. Therefore, a major challenge in
scaling the object detection is the difficulty of obtaining labeled
images for large numbers of categories [142,143]. Hoffman et al.
[142] proposed a Deep Detection Adaption (DDA) algorithm to
learn the difference between image classification and object
detection, transferring classifiers for categories into detectors,
without bounding box annotated data. The method has the
potential to enable the detection for thousands of categories which
lack bounding box annotations.

Two other promising, scalable approaches are ConceptLeaner
[128] and BabyLearning [187]. Both of them can learn accurate
concept detectors but without the massive annotation of visual
concepts. As collecting weakly labeled images is cheap, Con-
ceptLeaner develops a max-margin hard instance learning
Fig. 20. Image retrieval examples using CNN features. The left images are querying on
candidates. (For interpretation of the references to color in this figure legend, the reade
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algorithm to automatically discover visual concepts from noisy
labeled image collections. As a result, it has the potential to learn
concepts directly from the web. On the other hand, the Baby-
Learning [187] approach simulates a baby's interaction with the
physical world, and can achieve comparable results with state-of-
the-art full-training based approaches with only few samples for
each object category, along with large amounts of online unlabeled
videos.

From Table 4, we can also observe several factors that could
improve the performance, in addition to the algorithm itself: 1)
larger training set; 2) deeper base model; 3) Bounding Box
regression.

3.3. Image retrieval

Image retrieval aims to find images containing a similar object
or scene as in the query image, as illustrated in Fig. 20.

The success of AlexNet [6] suggests that the features emerging
in the upper layers of the CNN learned to classify images can serve
as good descriptors for image classification. Motivated by this,
many recent studies use CNN models for image retrieval tasks
[28,149,165,166,171,172]. These studies achieved competitive
results compared with the traditional methods, such as VLAD and
Fisher Vector. In the following paragraphs, we will introduce the
main ideas of these CNN based methods.

Inspired by Spatial Pyramid Matching, Gong et al. [28] pro-
posed a kind of “reverse SPM” idea that extracts patches at mul-
tiple scales, starting with the whole image, and then pool each
scale without regard to spatial information. Then it aggregates
local patch responses at the finer scales via VLAD encoding. The
orderless nature of VLAD helps to build a more invariant repre-
sentation. Finally, the original global deep activations are con-
catenated with the VLAD features for the finer scales to form the
new image representation.

Razavian et al. [165] used features extracted from the OverFeat
network as a generic image representation to tackle the diverse
range of vision tasks, including recognition and retrieval. First, it
augments the training set by adding cropped and rotated samples.
Then for each image, it extracts multiple sub-patches of different
sizes at different locations. Each sub-patch is computed for its CNN
presentation. The distance between the reference and the query
image is set to the average distance of each query sub-patch to the
reference image.

Given the recent successes that deep learning techniques have
achieved, the research presented in [166] attempts to evaluate if
deep learning can bridge the semantic gap in content-based image
retrieval (CBIR). Their encouraging results reveal that deep CNN
models pre-trained on large datasets can be directly used for
es, and the images with green frames in the right represent the positive retrieval
r is referred to the web version of this article.)
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feature extraction in new CBIR tasks. When being applied for
feature representation in a new domain, it was found that simi-
larity learning can further boost the retrieval performance. Fur-
ther, by retraining the deep models with a classification or simi-
larity learning objective on the new domain, the accuracy can be
improved significantly.

A different approach shown in [171] is to first extract object-
like image patches with a general object detector. Then, one CNN
feature is extracted in each object patch with the pre-trained
AlexNet model. With many results from their experiments, it is
concluded that their method can achieve a significant accuracy
improvement with the same space consumption, and with the
same time cost it still obtains a higher accuracy.

Finally, without sliding windows or multiple-scale patches,
Babenko et al. [172] focus on holistic descriptors where the whole
image is mapped to a single vector with a CNN model. It found
that the best performance is observed not at the very top of the
network, but rather at the layer that is two levels below the out-
puts. An important result is that PCA affects the performance of
the CNN much less than the performance of VLADs or Fisher
Vectors. Therefore PCA compression works better for CNN fea-
tures. In Table 6, we show the retrieval results in several public
datasets.

There is one more interesting problem in CNN features: which
layer has the highest impact on the final performance? Some
methods extract features in the second fully connected layer
[28,171]. In contrast to them, other methods use the first fully
connected layer in their CNN model for image representation
[165,172]. Moreover, these choices may change for different
datasets [166]. Thus, we think investigating the characteristics of
each layer is still an open problem.

3.4. Semantic segmentation

In the past half-year, a large number of studies focus on the
semantic segmentation task, and yield promising progress [137-
139,144,146,215]. The main reason of their success comes from
CNN models, which are capable of tackling the pixel-level
Table 6
Image retrieval results on several datasets.

Methods Holidays Paris6K Oxford5K UKB

Babenko et al. [172] 74.7 – 55.7 3.43
Sun et al. [171] 79.0 – – 3.61
Gong et al. [28] 80.2 – – –

Razavian et al. [165] 84.3 79.50 68.0 �(91.1)
Wan et al. [166] – 94.7 78.3 –

Table 7
Semantic segmentation results on PASCAL VOC 2012 val and test set.

Methods Train Val 2

SDS [164] VOC extra 53.9
CFM [148] VOC extra 60.9
FCN-8s [146] VOC extra –

Hypercolumn [138] VOC extra 59.0
DeepLab [144] VOC extra 63.7
DeepLab-MSc-LargeFOV [144] VOC extra 68.7
Piecewise-DCRFs [213] VOC extra 70.3
CRF-RNN [215] VOC extra 69.6
BoxSup [215] VOC extraþCOCO 68.2
Cross-Joint [216] VOC extraþCOCO 71.7
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predictions with the pre-trained networks on large-scale datasets.
Different from image-level classification and object-level detec-
tion, semantic segmentation requires output masks that have a 2D
spatial distribution. As for semantic segmentation, recent and
advanced CNN based methods can be summarized as follows:

(1) Detection-based segmentation. The approach segments
images based on the candidate windows outputted from
object detection [29,138,144,148]. RCNN [29] and SDS [164]
first generated region proposals for object detection, and then
utilized traditional approaches to segment the region and to
assign the pixels with the class label from detection. Based on
SDS [164], Hariharan et al. [138] proposed the hypercolumn at
each pixel as the vector of activations, and gained large
improvement. One disadvantage of detection-based segmen-
tation is the largely additional expense for object detection.
Without extracting regions from raw images, Dai et al. [148]
designed a convolutional feature masking (CFM) method to
extract proposals directly from the feature maps, which is
efficient as the convolutional feature maps only need to be
computed once. Even though, the errors caused by proposals
and object detection tend to be propagated to the
segmentation stage.

(2) FCN-CRFs based segmentation. In the second one, fully con-
volutional networks(FCN), replacing the fully connected layers
with more convolutional layers, has been a popular strategy
and baseline for semantic segmentation [144,146]. Long et al.
[146] defined a novel architecture that combined semantic
information from a deep, coarse layer with appearance infor-
mation from a shallow, fine layer to produce accurate and
detailed segmentations. DeepLab [144] proposed a similar FCN
model, but also integrated the strength of conditional random
fields (CRFs) into FCN for detailed boundary recovery. Instead
of using CRFs as a post-processing step, Lin et al. [213] jointly
trains the FCN and CRFs by efficient piecewise training. Like-
wise, the work in [214] converted the CRFs as a recurrent
neural network (RNN), which can be plugged in as a part of
FCN model.

(3) Weakly supervised annotations. Apart from the advancements
in segmentation models, some works are focused on weakly
supervised segmentation. Papandreou et al. [215] studied the
more challenging segmentation with weakly annotated train-
ing data such as bounding boxes or image-level labels. Like-
wise, the BoxSup method in [216] made use of bounding box
annotations to estimate segmentation masks, which are used
to update network iteratively. These works both showed
excellent performance when combining a small number of
pixel-level annotated images with a large number of bounding
box annotated images.
012 Test 2012 Descriptions

51.6 Region proposals on input images
61.8 Region proposals on feature maps
62.2 One model; three strides
62.6 Region proposals on input images
66.4 One model; one stride
71.6 Multi-scale; Field of view
70.7 3 scales of image; 5 models
72.0 Recurrent Neural Networks
71.0 Weakly supervised annotations
73.9 Weakly supervised annotations
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Fig. 21. Human pose estimation [212].

Table 8
The PDJ comparison on FLIC dataset.

PDJ (PCK) Head Shoulder Elbow Wrist

Jain et al. [206] – 42.6 24.1 22.3
DeepPose [204] – – 25.2 26.4
Chen et al. [205] – – 36.5 41.2
DS-CNN [210] – – 30.5 36.5
Tompson et al. [207] 90.7 70.4 50.2 55.4
Tompson et al. [208] 92.6 73 57.1 60.4

Table 9
The PCP comparison on LSP dataset.

Torso Head U.arms L.arms U.legs L.legs Mean

Ouyang et al. [209] 85.8 83.1 63.3 46.6 76.5 72.2 68.6
DeepPose [204] – – 56 38 77 71 –

Chen et al. [205] 92.7 87.8 69.2 55.4 82.9 77 75
DS-CNN [210] 98 85 80 63 90 88 84
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We describe the main properties of the above methods and
compare their results on PASCAL VOC 2012 val and test set, as
listed in Table 7.

3.5. Human pose estimation

Human pose estimation aims to estimate the localization of
human joints from still images or image sequences, as shown in
Fig. 21. It is very important for a wide range of potential applica-
tions, such as video surveillance, human behavior analysis,
human-computer interaction (HCI), and is being extensively stu-
died recently [192–195,205–211]. However, this task is also very
challenging because of the great variation of human appearances,
complicated backgrounds, as well as many other nuisance factors,
such as illumination, viewpoint, scale, etc. In this part, we mainly
summarize deep learning schemes to estimate the human articu-
lation from still images, although these schemes could be incor-
porated with motion features to further boost their performance
in videos [192–194].

Normally, human pose estimation involves multiple problems
such as recognizing people in images, detecting and describing
human body parts, and modeling their spatial configuration. Prior
to deep learning, the best performing human pose estimation
methods were based on body part detectors, i.e. detect and
describe the human body part first, and then impose the con-
textual relations between local parts. One typical part-based
approach is pictorial structures [196], which takes advantage of a
tree model to capture the geometric relations between adjacent
parts and has been developed by various well-known part-based
methods [197–200].
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As deep learning algorithms can learn high-level features
which are more tolerant to the variations of nuisance factors, and
have achieved success in various computer vision tasks, they have
recently received significant attention from the research
community.

We have summarized the performance of related deep learning
algorithms on two commonly used datasets: Frames Labeled In
Cinema (FLIC) [201] and Leeds Sports Pose (LSP) [202]. FLIC con-
sists of 3987 training images and 1016 test images obtained from
popular Hollywood movies, containing people in diverse poses,
annotated with upper-body joint labels. LSP and its extension
contains 11,000 training and 1000 testing images of sports people
gathered from Flickr with 14 full body joints annotated. There are
two widely accepted evaluation metrics for the evaluation: Per-
centage of Correct Parts (PCP) [203], which measures the rate of
correct limb detection, and Percent of Detected Joints (PDJ) [201],
which measures the rate of correct limb detection.

In the following, Table 8 illustrates the PDJ comparison of var-
ious deep learning methods on FLIC dataset, with a normalized
distance of 0.05, and Table 9 lists out the PCP comparison on LSP
dataset.

In general, deep learning schemes in human pose estimation
can be categorized according to the handling manner of input
images: holistic processing or part-based processing.

The holistic processing methods tend to accomplish their task
in a global manner, and do not explicitly define a model for each
individual part and their spatial relationships. One typical model is
called DeepPose proposed by Toshev et al. [204]. This model for-
mulates the human pose estimation method as a joint regression
problem and does not explicitly define the graphical model or part
erstanding: A review, Neurocomputing (2015), http://dx.doi.org/



Y. Guo et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 17
detectors for the human pose estimation. More specifically, it
utilizes a two-layer architecture: the first layer addresses the
ambiguity between body parts in a holistic way and generates the
initial pose estimation. The second layer refines the joint locations
for the estimation. This model achieved advances on several
challenging datasets. However, the holistic-based method suffers
from inaccuracy in the high-precision region, since it is difficult to
learn direct regression of complex pose vectors from images.

The part-based processing methods propose to detect the
human body parts individually, followed with a graphic model to
incorporate the spatial information. Instead of training the net-
work using the whole image, Chen et al. [205] utilized the local
part patches and background patches to train a DCNN, in order to
learn conditional probabilities of the part presence and spatial
relationships. By incorporating with graphic models, the algorithm
gained promising performance. Moreover, Jain et al. [206] trained
multiple smaller convnets to perform independent binary body-
part classification, followed with a higher-level weak spatial model
to remove strong outliers and to enforce global pose consistency.
Similarly, Tompson et al. [207] designed multi-resolution ConvNet
architectures to perform heat-map likelihood regression for each
body part, followed with an implicit graphic model to further
promote joint consistency. The model was further extended in
[208], which argues that the pooling layers in the CNNs would
limit spatial localization accuracy and try to recover the precision
loss of the pooling process. They especially improve the method
from [207] by adding a carefully designed Spatial Dropout layer,
and present a novel network which reuses hidden-layer convolu-
tional features to improve the precision of the spatial locality.

There are also approaches which suggesting combining both
the local part appearance and the holistic view of the parts for
more accurate human pose estimation. For example, Ouyang et al.
[209] derived a multi-source deep model from a Deep Belief Net
(DBN), which attempts to take advantage of three information
sources of human articulation, i.e. mixture type, appearance score
and deformation, and combine their high-level representations to
learn holistic, high-order human body articulation patterns. On the
other hand, Fan et al. [210] proposed a dual-source convolutional
neutral network (DS-CNN) to integrate the holistic and partial
view in the CNN framework. It takes part patches and body pat-
ches as inputs to combine both local and contextual information
for more accurate pose estimation.

As most of the schemes tend to design new feed-forward
architectures, Carreira et al. [211] introduced a self-correcting
model, called Iterative Error Feedback (IEF). This model can
encompass rich structure in both input and output spaces by
incorporating top–down feedback, and shows promising results.
4. Trends and challenges

Along with the promising performance deep learning has
achieved, the research literature has indicated several important
challenges as well as the inherent trends, which are described next.

4.1. Theoretical understanding

Although promising results in addressing computer vision
tasks have been achieved by deep learning methods, the under-
lying theory is not well understood, and there is no clear under-
standing of which architectures should perform better than others.
It is difficult to determine which structure, how many layers, or
how many nodes in each layer are proper for a certain task, and it
also need specific knowledge to choose sensible values such as the
learning rate, the strength of the regularizer, etc. The design of the
architecture has historically been determined on an ad-hoc basis.
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Chu et al. [140] proposed a theoretical method for determining the
optimal number of feature maps. However, this theoretical
method only worked for extremely small receptive fields. To better
understand the behavior of the well-known CNN architectures,
Zeiler et al. [52] developed a visualization technique that gave
insight into the function of intermediate feature layers. By
revealing the features in interpretable patterns, it brought further
possibilities for better architecture designs. Similar visualization
was also studied by Yu et al. [141].

Apart from visualizing the features, RCNN [29] attempted to
discover the learning pattern of CNN. It tested the performance in
a layer-by-layer pattern during the training process, and found
that the convolutional layers can learn more general features and
convey most of the CNN representational capacity, while the top
fully-connected layers are domain-specific. In addition to analyz-
ing the CNN features, Agrawal et al. [122] further investigated the
effects of some commonly used strategies on CNN performance,
such as fine-tuning and pre-training, and provided evidence-
backed intuitions to apply CNN models to computer vision
problems.

Despite the progress achieved in the theory of deep learning,
there is significant room for better understanding in evolving and
optimizing the CNN architectures toward improving desirable
properties such as invariance and class discrimination.
4.2. Human-level vision

Human vision has a remarkable proficiency in computer vision
tasks, even in simple visual representations or under changes to
geometric transformations, background variation, and occlusion.
Human-level vision can refer to either bridging the semantic gap
in terms of accuracy or in bringing new insights from studies of
the human brain to be integrated into machine learning archi-
tectures. Compared with the traditional low-level features, a CNN
mimics human brain structure and builds multi-layers activations
for mid-level or high-level features. The study in [166] aimed to
evaluate how much retrieval improvement can be achieved by
developing deep learning techniques, and whether deep features
are a desirable key to bridge the semantic gap in the long term. As
seen in Fig. 18, the image classification error on the ImageNet test
set decreases 10%, from 15.3% [6] in 2012 to 4.82% [163] in 2015.
This promising improvement verifies the efficiency of CNNs. In
particular, the result in [163] has exceeded the accuracy of human
raters. However, we cannot conclude that the representational
performance of a CNN rivals that of the brain [123]. For example, it
is easy to produce images that are completely unrecognizable to
humans, but one state-of-the-art CNN believes it to contain
recognizable objects with 99.99% confidence [124]. This result
highlights the difference between human vision and current CNN
models, and raises questions about the generality of CNNs in
computer vision. The study in [123] found that, like the IT cortex,
recent CNNs could generate similar feature spaces for the same
category, and distinct ones for images with different categories.
This result indicates that CNNs may provide insight into under-
standing primate visual processing. In another study [125], the
authors considered a novel approach for brain decoding for fMRI
data by leveraging unlabeled data and multi-layer temporal CNNs,
which learned multiple layers of temporal filters and trained
powerful brain decoding models. Whether CNN models that rely
on computational mechanisms are similar to the primate visual
system is yet to be determined, but it has the potential for further
improvements by mimicking and incorporating the primate visual
system.
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4.3. Training with limited data

Larger models demonstrate more potential capacity and have
become the tendency of recent developments. However, the shortage
of training data may limit the size and learning ability of such models,
especially when it is expensive to obtain fully labeled data. How to
overcome the need for enormous amounts of training data and how
to train large networks effectively remains to be addressed.

Currently, there are two commonly used solutions to obtain more
training data. The first solution is to generalize more training data
from existing data based on various data augmentation schemes, such
as scaling, rotating and cropping. On top of these, Wu et al. [159]
further adopted color casting, vignetting and lens distortion techni-
ques, which could produce much more converted training examples
with broad coverage. The second solution is to collect more training
data with weak learning algorithms. Recently, there has been a range
of articles on learning visual concepts from image search engines
[126,127]. In order to scale up computer vision recognition systems,
Zhou et al. [128] proposed the ConceptLearner approach, which could
automatically learn thousands of visual concept detectors from
weakly labeled image collections. Besides that, to reduce laborious
bounding box annotation costs for object detection, many weakly-
supervised approaches have emerged with image-level object-pre-
sence labeling [51]. Nevertheless, it is promising to further develop
techniques for generating or collecting more comprehensive training
data, which could make the networks learn better features that are
robust under various changes, such as geometric transformations, and
occlusion.

4.4. Time complexity

The early CNNs were seen as a method that required a lot of
computational resources and were not candidates for real-time
applications. One of the trends is towards developing new archi-
tectures which allow running a CNN in real-time. The study in [18]
conducted a series of experiments under constrained time cost,
and proposed models that are fast for real-world applications, yet
are competitive with existing CNN models. In addition, fixing the
time complexity also helps to understand the impacts of factors
such as depth, numbers of filters, filter sizes, etc. Another study
[15] eliminated all the redundant computations in the forward and
backward propagation in CNNs, which resulted in a speedup of
over 1500 times. It has robust flexibility for various CNN models
with different designs and structures, and reaches high efficiency
because of its GPU implementation. Ren et al. [3] converted the
key operators in deep CNNs to vectorized forms, so that high
parallelism can be achieved given basic parallelized matrix-vector
operators. They further provided a unified framework for both
high-level and low-level vision applications.

4.5. More powerful models

As deep learning related algorithms have moved forward the-
state-of-the-art results of various computer vision tasks by a large
margin, it becomes more challenging to make progress on top of
that. There might be several directions for more powerful models:

The first direction is to increase the generalization ability by
increasing the size of the networks [20,31]. Larger networks could
normally bring higher quality performance, but care should be
taken to address the issues this may cause, such as overfitting and
the need for a lot of computational resources.

A second direction is to combine the information from multiple
sources. Feature fusion has long been popular and appealing, and
this fusion can be categorized in two types. 1) Combine the fea-
tures of each layer in the network. Different layers may learn
different features [29]. It is promising if we could develop an
Please cite this article as: Y. Guo, et al., Deep learning for visual und
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algorithm to make the features from each layer to be com-
plementary. For example, DeepIndex [156] proposed to integrate
multiple CNN features by multiple inverted indices, including
different layers in one model or several layers from distinct
models. 2) Combine the features of different types. We can obtain
more comprehensive models by integrating with other type of
features, such as SIFT. To improve the image retrieval performance,
DeepEmbedding [157] used the SIFT features to build an inverted
index structure, and extracted the CNN features from the local
patches to enhance the matching strength.

A third direction towards more powerful models is to design
more specific deep networks. Currently, almost all of the CNN-
based schemes adopt a shared network for their predictions, which
may not be distinctive enough. A promising direction is to train a
more specific deep network, i.e. we should focus more on type of
object we are interested in. The study in [27] has verified that
object-level annotation is more useful than image-level annotation
for object detection. This can be viewed as a kind of specific deep
network which just focuses on the object rather than the whole
image. Another possible solution is to train different networks for
different categories. For instance, [158] built on the intuition that
not all classes are equally difficult to distinguish from a true class
label, and designed an initial coarse classifier CNN as well as several
fine CNNs. By adopting a coarse-to-fine classification strategy, it
achieves state-of-the-art performance on CIFAR100.

5. Conclusion

This paper presents a comprehensive review of deep learning
and develops a categorization scheme to analyze the existing deep
learning literature. It divides the deep learning algorithms into
four categories according to the basic model they derived from:
Convolutional Neural Networks, Restricted Boltzmann Machines,
Autoencoder and Sparse Coding. The state-of-the-art approaches
of the four classes are discussed and analyzed in detail. For the
applications in the computer vision domain, the paper mainly
reports the advancements of CNN based schemes, as it is the most
extensively utilized and most suitable for images. Most notably,
some recent articles have reported inspiring advances showing
that some CNN-based algorithms have already exceeded the
accuracy of human raters.

Despite the promising results reported so far, there is sig-
nificant room for further advances. For example, the underlying
theoretical foundation does not yet explain under what conditions
they will perform well or outperform other approaches, and how
to determine the optimal structure for a certain task. This paper
describes these challenges and summarizes the new trends in
designing and training deep neural networks, along with several
directions that may be further explored in the future.
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